Cargando…
Naotaifang extract treatment results in increased ferroportin expression in the hippocampus of rats subjected to cerebral ischemia
The expression of Ferroportin (Fpn) was examined at different time points in rats following focal cerebral ischemia treated with or without the traditional Chinese medicine Naotaifang. Initially, rats were randomly divided into 2, 6, 12, 24 and 72 h groups following middle cerebral artery occlusion...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394947/ https://www.ncbi.nlm.nih.gov/pubmed/25672910 http://dx.doi.org/10.3892/mmr.2015.3309 |
Sumario: | The expression of Ferroportin (Fpn) was examined at different time points in rats following focal cerebral ischemia treated with or without the traditional Chinese medicine Naotaifang. Initially, rats were randomly divided into 2, 6, 12, 24 and 72 h groups following middle cerebral artery occlusion (MCAO) and the mRNA and protein level of Fpn was detected by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) at the above time points. Secondly, the rats were randomly divided into five groups as follows: Sham surgery group, model group, low-dose group (3 g/kg NTE), medium dose group (9 g/kg NTE) and the high-dose group (27 g/kg NTE). After 3 days of corresponding therapy by intragastric administration once a day, the regional cerebral ischemia model was reproduced by the MCAO suture method. On the third day, the neurological behavior of the rats was analyzed by neurobehavioral assessment. Fpn in the hippocampal CA2 region was measured by immunohistochemistry and the mRNA level of Fpn was detected by RT-PCR. Expression of Fpn in the hippocampal CA2 region reached a peak 12 h after surgery (P<0.05, compared with the model group). The high-dose group (27 g/kg NTE) exhibited a lower neurological behavior score (P<0.05) and a higher level of expression of Fpn at the mRNA and protein level compared with the sham surgery group and model group (P<0.05). Dysregulation of intracellular iron balance is possibly a new mechanism underlying cerebral ischemia. NTE can protect the neuronal population in the hippocampal CA2 region by adjusting the expression of Fpn to balance iron levels following cerebral ischemia. |
---|