Cargando…
MiR-375 Promotes Redifferentiation of Adult Human β Cells Expanded In Vitro
In-vitro expansion of β cells from adult human pancreatic islets could provide abundant cells for cell replacement therapy of diabetes. However, proliferation of β-cell-derived (BCD) cells is associated with dedifferentiation. Here we analyzed changes in microRNAs (miRNAs) during BCD cell dedifferen...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395232/ https://www.ncbi.nlm.nih.gov/pubmed/25875172 http://dx.doi.org/10.1371/journal.pone.0122108 |
_version_ | 1782366399773016064 |
---|---|
author | Nathan, Gili Kredo-Russo, Sharon Geiger, Tamar Lenz, Ayelet Kaspi, Haggai Hornstein, Eran Efrat, Shimon |
author_facet | Nathan, Gili Kredo-Russo, Sharon Geiger, Tamar Lenz, Ayelet Kaspi, Haggai Hornstein, Eran Efrat, Shimon |
author_sort | Nathan, Gili |
collection | PubMed |
description | In-vitro expansion of β cells from adult human pancreatic islets could provide abundant cells for cell replacement therapy of diabetes. However, proliferation of β-cell-derived (BCD) cells is associated with dedifferentiation. Here we analyzed changes in microRNAs (miRNAs) during BCD cell dedifferentiation and identified miR-375 as one of the miRNAs greatly downregulated. We hypothesized that restoration of miR-375 expression in expanded BCD cells may contribute to their redifferentiation. Our findings demonstrate that overexpression of miR-375 alone leads to activation of β-cell gene expression, reduced cell proliferation, and a switch from N-cadherin to E-cadherin expression, which characterizes mesenchymal-epithelial transition. These effects, which are reproducible in cells derived from multiple human donors, are likely mediated by repression of PDPK1 transcripts and indirect downregulation of GSK3 activity. These findings support an important role of miR-375 in regulation of human β-cell phenotype, and suggest that miR-375 upregulation may facilitate the generation of functional insulin-producing cells following ex-vivo expansion of human islet cells. |
format | Online Article Text |
id | pubmed-4395232 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43952322015-04-21 MiR-375 Promotes Redifferentiation of Adult Human β Cells Expanded In Vitro Nathan, Gili Kredo-Russo, Sharon Geiger, Tamar Lenz, Ayelet Kaspi, Haggai Hornstein, Eran Efrat, Shimon PLoS One Research Article In-vitro expansion of β cells from adult human pancreatic islets could provide abundant cells for cell replacement therapy of diabetes. However, proliferation of β-cell-derived (BCD) cells is associated with dedifferentiation. Here we analyzed changes in microRNAs (miRNAs) during BCD cell dedifferentiation and identified miR-375 as one of the miRNAs greatly downregulated. We hypothesized that restoration of miR-375 expression in expanded BCD cells may contribute to their redifferentiation. Our findings demonstrate that overexpression of miR-375 alone leads to activation of β-cell gene expression, reduced cell proliferation, and a switch from N-cadherin to E-cadherin expression, which characterizes mesenchymal-epithelial transition. These effects, which are reproducible in cells derived from multiple human donors, are likely mediated by repression of PDPK1 transcripts and indirect downregulation of GSK3 activity. These findings support an important role of miR-375 in regulation of human β-cell phenotype, and suggest that miR-375 upregulation may facilitate the generation of functional insulin-producing cells following ex-vivo expansion of human islet cells. Public Library of Science 2015-04-13 /pmc/articles/PMC4395232/ /pubmed/25875172 http://dx.doi.org/10.1371/journal.pone.0122108 Text en © 2015 Nathan et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Nathan, Gili Kredo-Russo, Sharon Geiger, Tamar Lenz, Ayelet Kaspi, Haggai Hornstein, Eran Efrat, Shimon MiR-375 Promotes Redifferentiation of Adult Human β Cells Expanded In Vitro |
title | MiR-375 Promotes Redifferentiation of Adult Human β Cells Expanded In Vitro |
title_full | MiR-375 Promotes Redifferentiation of Adult Human β Cells Expanded In Vitro |
title_fullStr | MiR-375 Promotes Redifferentiation of Adult Human β Cells Expanded In Vitro |
title_full_unstemmed | MiR-375 Promotes Redifferentiation of Adult Human β Cells Expanded In Vitro |
title_short | MiR-375 Promotes Redifferentiation of Adult Human β Cells Expanded In Vitro |
title_sort | mir-375 promotes redifferentiation of adult human β cells expanded in vitro |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395232/ https://www.ncbi.nlm.nih.gov/pubmed/25875172 http://dx.doi.org/10.1371/journal.pone.0122108 |
work_keys_str_mv | AT nathangili mir375promotesredifferentiationofadulthumanbcellsexpandedinvitro AT kredorussosharon mir375promotesredifferentiationofadulthumanbcellsexpandedinvitro AT geigertamar mir375promotesredifferentiationofadulthumanbcellsexpandedinvitro AT lenzayelet mir375promotesredifferentiationofadulthumanbcellsexpandedinvitro AT kaspihaggai mir375promotesredifferentiationofadulthumanbcellsexpandedinvitro AT hornsteineran mir375promotesredifferentiationofadulthumanbcellsexpandedinvitro AT efratshimon mir375promotesredifferentiationofadulthumanbcellsexpandedinvitro |