Cargando…

Open source software for quantification of cell migration, protrusions, and fluorescence intensities

Cell migration is frequently accompanied by changes in cell morphology (morphodynamics) on a range of spatial and temporal scales. Despite recent advances in imaging techniques, the application of unbiased computational image analysis methods for morphodynamic quantification is rare. For example, ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Barry, David J., Durkin, Charlotte H., Abella, Jasmine V., Way, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395480/
https://www.ncbi.nlm.nih.gov/pubmed/25847537
http://dx.doi.org/10.1083/jcb.201501081
Descripción
Sumario:Cell migration is frequently accompanied by changes in cell morphology (morphodynamics) on a range of spatial and temporal scales. Despite recent advances in imaging techniques, the application of unbiased computational image analysis methods for morphodynamic quantification is rare. For example, manual analysis using kymographs is still commonplace, often caused by lack of access to user-friendly, automated tools. We now describe software designed for the automated quantification of cell migration and morphodynamics. Implemented as a plug-in for the open-source platform, ImageJ, ADAPT is capable of rapid, automated analysis of migration and membrane protrusions, together with associated fluorescently labeled proteins, across multiple cells. We demonstrate the ability of the software by quantifying variations in cell population migration rates on different extracellular matrices. We also show that ADAPT can detect and morphologically profile filopodia. Finally, we have used ADAPT to compile an unbiased description of a “typical” bleb formed at the plasma membrane and quantify the effect of Arp2/3 complex inhibition on bleb retraction.