Cargando…

Duck RIG-I CARD Domain Induces the Chicken IFN-β by Activating NF-κB

Retinoic acid-inducible gene I- (RIG-I-) like receptors (RLRs) have recently been identified as cytoplasmic sensors for viral RNA. RIG-I, a member of RLRs family, plays an important role in innate immunity. Although previous investigations have proved that RIG-I is absent in chickens, it remains lar...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yang, Huang, Zhengyang, Wang, Bin, Yu, Qinming, Liu, Ran, Xu, Qi, Chang, Guobin, Ding, Jiatong, Chen, Guohong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396137/
https://www.ncbi.nlm.nih.gov/pubmed/25918711
http://dx.doi.org/10.1155/2015/348792
Descripción
Sumario:Retinoic acid-inducible gene I- (RIG-I-) like receptors (RLRs) have recently been identified as cytoplasmic sensors for viral RNA. RIG-I, a member of RLRs family, plays an important role in innate immunity. Although previous investigations have proved that RIG-I is absent in chickens, it remains largely unknown whether the chicken can respond to RIG-I ligand. In this study, the eukaryotic expression vectors encoding duRIG-I full length (duck RIG-I, containing all domains), duRIG-I N-terminal (containing the two caspase activation and recruitment domain, CARDs), and duRIG-I C-terminal (containing helicase and regulatory domains) labeled with 6∗His tags were constructed successfully and detected by western blotting. Luciferase reporter assay and enzyme-linked immunosorbent assay (ELISA) detected the duRIG-I significantly activated NF-κB and induced the expression of IFN-β when polyinosinic-polycytidylic acid (poly[I:C], synthetic double-stranded RNA) challenges chicken embryonic fibroblasts cells (DF1 cells), while the duRIG-I was inactive in the absence of poly[I:C]. Further analysis revealed that the CARDs (duRIG-I-N) induced IFN-β production regardless of the presence of poly[I:C], while the CARD-lacking duRIG-I (duRIG-I-C) was not capable of activating downstream signals. These results indicate that duRIG-I CARD domain plays an important role in the induction of IFN-β and provide a basis for further studying the function of RIG-I in avian innate immunity.