Cargando…
The rise of multiple imputation: a review of the reporting and implementation of the method in medical research
BACKGROUND: Missing data are common in medical research, which can lead to a loss in statistical power and potentially biased results if not handled appropriately. Multiple imputation (MI) is a statistical method, widely adopted in practice, for dealing with missing data. Many academic journals now...
Autores principales: | Hayati Rezvan, Panteha, Lee, Katherine J, Simpson, Julie A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396150/ https://www.ncbi.nlm.nih.gov/pubmed/25880850 http://dx.doi.org/10.1186/s12874-015-0022-1 |
Ejemplares similares
-
Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation
por: Hayati Rezvan, Panteha, et al.
Publicado: (2015) -
A comparison of multiple imputation methods for missing data in longitudinal studies
por: Huque, Md Hamidul, et al.
Publicado: (2018) -
Comparison of multiple imputation and other methods for the analysis of imputed genotypes
por: Auer, Paul L., et al.
Publicado: (2023) -
Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review
por: Mainzer, Rheanna, et al.
Publicado: (2023) -
Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study
por: De Silva, Anurika Priyanjali, et al.
Publicado: (2019)