Cargando…

A second-generation computational modeling of cardiac electrophysiology: response of action potential to ionic concentration changes and metabolic inhibition

BACKGROUND: Cardiac arrhythmias are becoming one of the major health care problem in the world, causing numerous serious disease conditions including stroke and sudden cardiac death. Furthermore, cardiac arrhythmias are intimately related to the signaling ability of cardiac cells, and are caused by...

Descripción completa

Detalles Bibliográficos
Autores principales: Alaa, Nour Eddine, Lefraich, Hamid, El Malki, Imane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396161/
https://www.ncbi.nlm.nih.gov/pubmed/25335804
http://dx.doi.org/10.1186/1742-4682-11-46
Descripción
Sumario:BACKGROUND: Cardiac arrhythmias are becoming one of the major health care problem in the world, causing numerous serious disease conditions including stroke and sudden cardiac death. Furthermore, cardiac arrhythmias are intimately related to the signaling ability of cardiac cells, and are caused by signaling defects. Consequently, modeling the electrical activity of the heart, and the complex signaling models that subtend dangerous arrhythmias such as tachycardia and fibrillation, necessitates a quantitative model of action potential (AP) propagation. Yet, many electrophysiological models, which accurately reproduce dynamical characteristic of the action potential in cells, have been introduced. However, these models are very complex and are very time consuming computationally. Consequently, a large amount of research is consecrated to design models with less computational complexity. RESULTS: This paper is presenting a new model for analyzing the propagation of ionic concentrations and electrical potential in space and time. In this model, the transport of ions is governed by Nernst-Planck flux equation (NP), and the electrical interaction of the species is described by a new cable equation. These set of equations form a system of coupled partial nonlinear differential equations that is solved numerically. In the first we describe the mathematical model. To realize the numerical simulation of our model, we proceed by a finite element discretization and then we choose an appropriate resolution algorithm. CONCLUSIONS: We give numerical simulations obtained for different input scenarios in the case of suicide substrate reaction which were compared to those obtained in literature. These input scenarios have been chosen so as to provide an intuitive understanding of dynamics of the model. By accessing time and space domains, it is shown that interpreting the electrical potential of cell membrane at steady state is incorrect. This model is general and applies to ions of any charge in space and time domains. The results obtained show a complete agreement with literature findings and also with the physical interpretation of the phenomenon. Furthermore, various numerical experiments are presented to confirm the accuracy, efficiency and stability of the proposed method. In particular, we show that the scheme is second-order accurate in space.