Cargando…

Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors

High-power Na-ion batteries have tremendous potential in various large-scale applications. However, conventional charge storage through ion intercalation or double-layer formation cannot satisfy the requirements of such applications owing to the slow kinetics of ion intercalation and the small capac...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xianfen, Kajiyama, Satoshi, Iinuma, Hiroki, Hosono, Eiji, Oro, Shinji, Moriguchi, Isamu, Okubo, Masashi, Yamada, Atsuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396360/
https://www.ncbi.nlm.nih.gov/pubmed/25832913
http://dx.doi.org/10.1038/ncomms7544
_version_ 1782366564179247104
author Wang, Xianfen
Kajiyama, Satoshi
Iinuma, Hiroki
Hosono, Eiji
Oro, Shinji
Moriguchi, Isamu
Okubo, Masashi
Yamada, Atsuo
author_facet Wang, Xianfen
Kajiyama, Satoshi
Iinuma, Hiroki
Hosono, Eiji
Oro, Shinji
Moriguchi, Isamu
Okubo, Masashi
Yamada, Atsuo
author_sort Wang, Xianfen
collection PubMed
description High-power Na-ion batteries have tremendous potential in various large-scale applications. However, conventional charge storage through ion intercalation or double-layer formation cannot satisfy the requirements of such applications owing to the slow kinetics of ion intercalation and the small capacitance of the double layer. The present work demonstrates that the pseudocapacitance of the nanosheet compound MXene Ti(2)C achieves a higher specific capacity relative to double-layer capacitor electrodes and a higher rate capability relative to ion intercalation electrodes. By utilizing the pseudocapacitance as a negative electrode, the prototype Na-ion full cell consisting of an alluaudite Na(2)Fe(2)(SO(4))(3) positive electrode and an MXene Ti(2)C negative electrode operates at a relatively high voltage of 2.4 V and delivers 90 and 40 mAh g(−1) at 1.0 and 5.0 A g(−1) (based on the weight of the negative electrode), respectively, which are not attainable by conventional electrochemical energy storage systems.
format Online
Article
Text
id pubmed-4396360
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-43963602015-04-24 Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors Wang, Xianfen Kajiyama, Satoshi Iinuma, Hiroki Hosono, Eiji Oro, Shinji Moriguchi, Isamu Okubo, Masashi Yamada, Atsuo Nat Commun Article High-power Na-ion batteries have tremendous potential in various large-scale applications. However, conventional charge storage through ion intercalation or double-layer formation cannot satisfy the requirements of such applications owing to the slow kinetics of ion intercalation and the small capacitance of the double layer. The present work demonstrates that the pseudocapacitance of the nanosheet compound MXene Ti(2)C achieves a higher specific capacity relative to double-layer capacitor electrodes and a higher rate capability relative to ion intercalation electrodes. By utilizing the pseudocapacitance as a negative electrode, the prototype Na-ion full cell consisting of an alluaudite Na(2)Fe(2)(SO(4))(3) positive electrode and an MXene Ti(2)C negative electrode operates at a relatively high voltage of 2.4 V and delivers 90 and 40 mAh g(−1) at 1.0 and 5.0 A g(−1) (based on the weight of the negative electrode), respectively, which are not attainable by conventional electrochemical energy storage systems. Nature Pub. Group 2015-04-02 /pmc/articles/PMC4396360/ /pubmed/25832913 http://dx.doi.org/10.1038/ncomms7544 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Wang, Xianfen
Kajiyama, Satoshi
Iinuma, Hiroki
Hosono, Eiji
Oro, Shinji
Moriguchi, Isamu
Okubo, Masashi
Yamada, Atsuo
Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors
title Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors
title_full Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors
title_fullStr Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors
title_full_unstemmed Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors
title_short Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors
title_sort pseudocapacitance of mxene nanosheets for high-power sodium-ion hybrid capacitors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396360/
https://www.ncbi.nlm.nih.gov/pubmed/25832913
http://dx.doi.org/10.1038/ncomms7544
work_keys_str_mv AT wangxianfen pseudocapacitanceofmxenenanosheetsforhighpowersodiumionhybridcapacitors
AT kajiyamasatoshi pseudocapacitanceofmxenenanosheetsforhighpowersodiumionhybridcapacitors
AT iinumahiroki pseudocapacitanceofmxenenanosheetsforhighpowersodiumionhybridcapacitors
AT hosonoeiji pseudocapacitanceofmxenenanosheetsforhighpowersodiumionhybridcapacitors
AT oroshinji pseudocapacitanceofmxenenanosheetsforhighpowersodiumionhybridcapacitors
AT moriguchiisamu pseudocapacitanceofmxenenanosheetsforhighpowersodiumionhybridcapacitors
AT okubomasashi pseudocapacitanceofmxenenanosheetsforhighpowersodiumionhybridcapacitors
AT yamadaatsuo pseudocapacitanceofmxenenanosheetsforhighpowersodiumionhybridcapacitors