Cargando…

Demonstration of entanglement-enhanced phase estimation in solid

Precise parameter estimation plays a central role in science and technology. The statistical error in estimation can be decreased by repeating measurement, leading to that the resultant uncertainty of the estimated parameter is proportional to the square root of the number of repetitions in accordan...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Gang-Qin, Zhang, Yu-Ran, Chang, Yan-Chun, Yue, Jie-Dong, Fan, Heng, Pan, Xin-Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396365/
https://www.ncbi.nlm.nih.gov/pubmed/25832364
http://dx.doi.org/10.1038/ncomms7726
_version_ 1782366565111431168
author Liu, Gang-Qin
Zhang, Yu-Ran
Chang, Yan-Chun
Yue, Jie-Dong
Fan, Heng
Pan, Xin-Yu
author_facet Liu, Gang-Qin
Zhang, Yu-Ran
Chang, Yan-Chun
Yue, Jie-Dong
Fan, Heng
Pan, Xin-Yu
author_sort Liu, Gang-Qin
collection PubMed
description Precise parameter estimation plays a central role in science and technology. The statistical error in estimation can be decreased by repeating measurement, leading to that the resultant uncertainty of the estimated parameter is proportional to the square root of the number of repetitions in accordance with the central limit theorem. Quantum parameter estimation, an emerging field of quantum technology, aims to use quantum resources to yield higher statistical precision than classical approaches. Here we report the first room-temperature implementation of entanglement-enhanced phase estimation in a solid-state system: the nitrogen-vacancy centre in pure diamond. We demonstrate a super-resolving phase measurement with two entangled qubits of different physical realizations: an nitrogen-vacancy centre electron spin and a proximal (13)C nuclear spin. The experimental data shows clearly the uncertainty reduction when entanglement resource is used, confirming the theoretical expectation. Our results represent an elemental demonstration of enhancement of quantum metrology against classical procedure.
format Online
Article
Text
id pubmed-4396365
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-43963652015-04-24 Demonstration of entanglement-enhanced phase estimation in solid Liu, Gang-Qin Zhang, Yu-Ran Chang, Yan-Chun Yue, Jie-Dong Fan, Heng Pan, Xin-Yu Nat Commun Article Precise parameter estimation plays a central role in science and technology. The statistical error in estimation can be decreased by repeating measurement, leading to that the resultant uncertainty of the estimated parameter is proportional to the square root of the number of repetitions in accordance with the central limit theorem. Quantum parameter estimation, an emerging field of quantum technology, aims to use quantum resources to yield higher statistical precision than classical approaches. Here we report the first room-temperature implementation of entanglement-enhanced phase estimation in a solid-state system: the nitrogen-vacancy centre in pure diamond. We demonstrate a super-resolving phase measurement with two entangled qubits of different physical realizations: an nitrogen-vacancy centre electron spin and a proximal (13)C nuclear spin. The experimental data shows clearly the uncertainty reduction when entanglement resource is used, confirming the theoretical expectation. Our results represent an elemental demonstration of enhancement of quantum metrology against classical procedure. Nature Pub. Group 2015-04-02 /pmc/articles/PMC4396365/ /pubmed/25832364 http://dx.doi.org/10.1038/ncomms7726 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Liu, Gang-Qin
Zhang, Yu-Ran
Chang, Yan-Chun
Yue, Jie-Dong
Fan, Heng
Pan, Xin-Yu
Demonstration of entanglement-enhanced phase estimation in solid
title Demonstration of entanglement-enhanced phase estimation in solid
title_full Demonstration of entanglement-enhanced phase estimation in solid
title_fullStr Demonstration of entanglement-enhanced phase estimation in solid
title_full_unstemmed Demonstration of entanglement-enhanced phase estimation in solid
title_short Demonstration of entanglement-enhanced phase estimation in solid
title_sort demonstration of entanglement-enhanced phase estimation in solid
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396365/
https://www.ncbi.nlm.nih.gov/pubmed/25832364
http://dx.doi.org/10.1038/ncomms7726
work_keys_str_mv AT liugangqin demonstrationofentanglementenhancedphaseestimationinsolid
AT zhangyuran demonstrationofentanglementenhancedphaseestimationinsolid
AT changyanchun demonstrationofentanglementenhancedphaseestimationinsolid
AT yuejiedong demonstrationofentanglementenhancedphaseestimationinsolid
AT fanheng demonstrationofentanglementenhancedphaseestimationinsolid
AT panxinyu demonstrationofentanglementenhancedphaseestimationinsolid