Cargando…
Multiscale Region-Level VHR Image Change Detection via Sparse Change Descriptor and Robust Discriminative Dictionary Learning
Very high resolution (VHR) image change detection is challenging due to the low discriminative ability of change feature and the difficulty of change decision in utilizing the multilevel contextual information. Most change feature extraction techniques put emphasis on the change degree description (...
Autores principales: | Xu, Yuan, Ding, Kun, Huo, Chunlei, Zhong, Zisha, Li, Haichang, Pan, Chunhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396995/ https://www.ncbi.nlm.nih.gov/pubmed/25918748 http://dx.doi.org/10.1155/2015/947695 |
Ejemplares similares
-
Embedded Implementation of VHR Satellite Image Segmentation
por: Li, Chao, et al.
Publicado: (2016) -
Discriminating mild traumatic brain injury using sparse dictionary learning of functional network dynamics
por: Fan, Liangwei, et al.
Publicado: (2021) -
pyVHR: a Python framework for remote photoplethysmography
por: Boccignone, Giuseppe, et al.
Publicado: (2022) -
Correntropy-Induced Discriminative Nonnegative Sparse Coding for Robust Palmprint Recognition
por: Jing, Kunlei, et al.
Publicado: (2020) -
A Fechner multiscale local descriptor for face recognition
por: Feng, Jinxiang, et al.
Publicado: (2023)