Cargando…
Examining the Role of Components of Slc11a1 (Nramp1) in the Susceptibility of New Zealand Sea Lions (Phocarctos hookeri) to Disease
The New Zealand sea lion (NZSL, Phocarctos hookeri) is a Threatened marine mammal with a restricted distribution and a small, declining, population size. The species is susceptible to bacterial pathogens, having suffered three mass mortality events since 1998. Understanding the genetic factors linke...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397024/ https://www.ncbi.nlm.nih.gov/pubmed/25874773 http://dx.doi.org/10.1371/journal.pone.0122703 |
Sumario: | The New Zealand sea lion (NZSL, Phocarctos hookeri) is a Threatened marine mammal with a restricted distribution and a small, declining, population size. The species is susceptible to bacterial pathogens, having suffered three mass mortality events since 1998. Understanding the genetic factors linked to this susceptibility is important in mitigating population decline. The gene solute carrier family 11 member a1 (Slc11a1) plays an important role in mammalian resistance or susceptibility to a wide range of bacterial pathogens. At present, Slc11a1 has not been characterised in many taxa, and despite its known roles in mediating the effects of infectious disease agents, has not been examined as a candidate gene in susceptibility or resistance in any wild population of conservation concern. Here we examine components of Slc11a1 in NZSLs and identify: i) a polymorphic nucleotide in the promoter region; ii) putative shared transcription factor binding motifs between canids and NZSLs; and iii) a conserved polymorphic microsatellite in the first intron of Slc11a1, which together suggest conservation of Slc11a1 gene structure in otariids. At the promoter polymorphism, we demonstrate a shift away from normal allele frequency distributions and an increased likelihood of death from infectious causes with one allelic variant. While this increased likelihood is not statistically significant, lack of significance is potentially due to the complexity of genetic susceptibility to disease in wild populations. Our preliminary data highlight the potential significance of this gene in disease resistance in wild populations; further exploration of Slc11a1 will aid the understanding of susceptibility to infection in mammalian species of conservation significance. |
---|