Cargando…
A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection
In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of out...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397060/ https://www.ncbi.nlm.nih.gov/pubmed/25875623 http://dx.doi.org/10.1371/journal.pbio.1002116 |
_version_ | 1782366667038261248 |
---|---|
author | Chakraborty, Smarajit Mizusaki, Hideaki Kenney, Linda J. |
author_facet | Chakraborty, Smarajit Mizusaki, Hideaki Kenney, Linda J. |
author_sort | Chakraborty, Smarajit |
collection | PubMed |
description | In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor (“I-switch”) to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad-dependent manner. Acid-dependent activation of OmpR stimulated type III secretion; blocking acidification resulted in a neutralized cytoplasm that was defective for SPI-2 secretion. Based upon these findings, we propose that Salmonella infection involves an acid-dependent secretion process in which the translocon SseB moves away from the bacterial cell surface as it associates with the vacuolar membrane, driving the secretion of SPI-2 effectors such as SseJ. New steps in the SPI-2 secretion process are proposed. |
format | Online Article Text |
id | pubmed-4397060 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43970602015-04-21 A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection Chakraborty, Smarajit Mizusaki, Hideaki Kenney, Linda J. PLoS Biol Research Article In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor (“I-switch”) to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad-dependent manner. Acid-dependent activation of OmpR stimulated type III secretion; blocking acidification resulted in a neutralized cytoplasm that was defective for SPI-2 secretion. Based upon these findings, we propose that Salmonella infection involves an acid-dependent secretion process in which the translocon SseB moves away from the bacterial cell surface as it associates with the vacuolar membrane, driving the secretion of SPI-2 effectors such as SseJ. New steps in the SPI-2 secretion process are proposed. Public Library of Science 2015-04-14 /pmc/articles/PMC4397060/ /pubmed/25875623 http://dx.doi.org/10.1371/journal.pbio.1002116 Text en © 2015 Chakraborty et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chakraborty, Smarajit Mizusaki, Hideaki Kenney, Linda J. A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection |
title | A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection |
title_full | A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection |
title_fullStr | A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection |
title_full_unstemmed | A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection |
title_short | A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection |
title_sort | fret-based dna biosensor tracks ompr-dependent acidification of salmonella during macrophage infection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397060/ https://www.ncbi.nlm.nih.gov/pubmed/25875623 http://dx.doi.org/10.1371/journal.pbio.1002116 |
work_keys_str_mv | AT chakrabortysmarajit afretbaseddnabiosensortracksomprdependentacidificationofsalmonelladuringmacrophageinfection AT mizusakihideaki afretbaseddnabiosensortracksomprdependentacidificationofsalmonelladuringmacrophageinfection AT kenneylindaj afretbaseddnabiosensortracksomprdependentacidificationofsalmonelladuringmacrophageinfection AT chakrabortysmarajit fretbaseddnabiosensortracksomprdependentacidificationofsalmonelladuringmacrophageinfection AT mizusakihideaki fretbaseddnabiosensortracksomprdependentacidificationofsalmonelladuringmacrophageinfection AT kenneylindaj fretbaseddnabiosensortracksomprdependentacidificationofsalmonelladuringmacrophageinfection |