Cargando…
Comparative Transcriptome Profiling of the Early Infection of Wheat Roots by Gaeumannomyces graminis var. tritici
Take-all, which is caused by the fungal pathogen, Gaeumannomyces graminis var. tritici (Ggt), is an important soil-borne root rot disease of wheat occurring worldwide. However, the genetic basis of Ggt pathogenicity remains unclear. In this study, transcriptome sequencing for Ggt in axenic culture a...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397062/ https://www.ncbi.nlm.nih.gov/pubmed/25875107 http://dx.doi.org/10.1371/journal.pone.0120691 |
_version_ | 1782366667506974720 |
---|---|
author | Yang, Lirong Xie, Lihua Xue, Baoguo Goodwin, Paul H. Quan, Xin Zheng, Chuanlin Liu, Taiguo Lei, Zhensheng Yang, Xiaojie Chao, Yueen Wu, Chao |
author_facet | Yang, Lirong Xie, Lihua Xue, Baoguo Goodwin, Paul H. Quan, Xin Zheng, Chuanlin Liu, Taiguo Lei, Zhensheng Yang, Xiaojie Chao, Yueen Wu, Chao |
author_sort | Yang, Lirong |
collection | PubMed |
description | Take-all, which is caused by the fungal pathogen, Gaeumannomyces graminis var. tritici (Ggt), is an important soil-borne root rot disease of wheat occurring worldwide. However, the genetic basis of Ggt pathogenicity remains unclear. In this study, transcriptome sequencing for Ggt in axenic culture and Ggt-infected wheat roots was performed using Illumina paired-end sequencing. Approximately 2.62 and 7.76 Gb of clean reads were obtained, and 87% and 63% of the total reads were mapped to the Ggt genome for RNA extracted from Ggt in culture and infected roots, respectively. A total of 3,258 differentially expressed genes (DEGs) were identified with 2,107 (65%) being 2-fold up-regulated and 1,151 (35%) being 2-fold down-regulated between Ggt in culture and Ggt in infected wheat roots. Annotation of these DEGs revealed that many were associated with possible Ggt pathogenicity factors, such as genes for guanine nucleotide-binding protein alpha-2 subunit, cellulase, pectinase, xylanase, glucosidase, aspartic protease and gentisate 1, 2-dioxygenase. Twelve DEGs were analyzed for expression by qRT-PCR, and could be generally divided into those with high expression only early in infection, only late in infection and those that gradually increasing expression over time as root rot developed. This indicates that these possible pathogenicity factors may play roles during different stages of the interaction, such as signaling, plant cell wall degradation and responses to plant defense compounds. This is the first study to compare the transcriptomes of Ggt growing saprophytically in axenic cultures to it growing parasitically in infected wheat roots. As a result, new candidate pathogenicity factors have been identified, which can be further examined by gene knock-outs and other methods to assess their true role in the ability of Ggt to infect roots. |
format | Online Article Text |
id | pubmed-4397062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43970622015-04-21 Comparative Transcriptome Profiling of the Early Infection of Wheat Roots by Gaeumannomyces graminis var. tritici Yang, Lirong Xie, Lihua Xue, Baoguo Goodwin, Paul H. Quan, Xin Zheng, Chuanlin Liu, Taiguo Lei, Zhensheng Yang, Xiaojie Chao, Yueen Wu, Chao PLoS One Research Article Take-all, which is caused by the fungal pathogen, Gaeumannomyces graminis var. tritici (Ggt), is an important soil-borne root rot disease of wheat occurring worldwide. However, the genetic basis of Ggt pathogenicity remains unclear. In this study, transcriptome sequencing for Ggt in axenic culture and Ggt-infected wheat roots was performed using Illumina paired-end sequencing. Approximately 2.62 and 7.76 Gb of clean reads were obtained, and 87% and 63% of the total reads were mapped to the Ggt genome for RNA extracted from Ggt in culture and infected roots, respectively. A total of 3,258 differentially expressed genes (DEGs) were identified with 2,107 (65%) being 2-fold up-regulated and 1,151 (35%) being 2-fold down-regulated between Ggt in culture and Ggt in infected wheat roots. Annotation of these DEGs revealed that many were associated with possible Ggt pathogenicity factors, such as genes for guanine nucleotide-binding protein alpha-2 subunit, cellulase, pectinase, xylanase, glucosidase, aspartic protease and gentisate 1, 2-dioxygenase. Twelve DEGs were analyzed for expression by qRT-PCR, and could be generally divided into those with high expression only early in infection, only late in infection and those that gradually increasing expression over time as root rot developed. This indicates that these possible pathogenicity factors may play roles during different stages of the interaction, such as signaling, plant cell wall degradation and responses to plant defense compounds. This is the first study to compare the transcriptomes of Ggt growing saprophytically in axenic cultures to it growing parasitically in infected wheat roots. As a result, new candidate pathogenicity factors have been identified, which can be further examined by gene knock-outs and other methods to assess their true role in the ability of Ggt to infect roots. Public Library of Science 2015-04-14 /pmc/articles/PMC4397062/ /pubmed/25875107 http://dx.doi.org/10.1371/journal.pone.0120691 Text en © 2015 Yang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Yang, Lirong Xie, Lihua Xue, Baoguo Goodwin, Paul H. Quan, Xin Zheng, Chuanlin Liu, Taiguo Lei, Zhensheng Yang, Xiaojie Chao, Yueen Wu, Chao Comparative Transcriptome Profiling of the Early Infection of Wheat Roots by Gaeumannomyces graminis var. tritici |
title | Comparative Transcriptome Profiling of the Early Infection of Wheat Roots by Gaeumannomyces graminis var. tritici
|
title_full | Comparative Transcriptome Profiling of the Early Infection of Wheat Roots by Gaeumannomyces graminis var. tritici
|
title_fullStr | Comparative Transcriptome Profiling of the Early Infection of Wheat Roots by Gaeumannomyces graminis var. tritici
|
title_full_unstemmed | Comparative Transcriptome Profiling of the Early Infection of Wheat Roots by Gaeumannomyces graminis var. tritici
|
title_short | Comparative Transcriptome Profiling of the Early Infection of Wheat Roots by Gaeumannomyces graminis var. tritici
|
title_sort | comparative transcriptome profiling of the early infection of wheat roots by gaeumannomyces graminis var. tritici |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397062/ https://www.ncbi.nlm.nih.gov/pubmed/25875107 http://dx.doi.org/10.1371/journal.pone.0120691 |
work_keys_str_mv | AT yanglirong comparativetranscriptomeprofilingoftheearlyinfectionofwheatrootsbygaeumannomycesgraminisvartritici AT xielihua comparativetranscriptomeprofilingoftheearlyinfectionofwheatrootsbygaeumannomycesgraminisvartritici AT xuebaoguo comparativetranscriptomeprofilingoftheearlyinfectionofwheatrootsbygaeumannomycesgraminisvartritici AT goodwinpaulh comparativetranscriptomeprofilingoftheearlyinfectionofwheatrootsbygaeumannomycesgraminisvartritici AT quanxin comparativetranscriptomeprofilingoftheearlyinfectionofwheatrootsbygaeumannomycesgraminisvartritici AT zhengchuanlin comparativetranscriptomeprofilingoftheearlyinfectionofwheatrootsbygaeumannomycesgraminisvartritici AT liutaiguo comparativetranscriptomeprofilingoftheearlyinfectionofwheatrootsbygaeumannomycesgraminisvartritici AT leizhensheng comparativetranscriptomeprofilingoftheearlyinfectionofwheatrootsbygaeumannomycesgraminisvartritici AT yangxiaojie comparativetranscriptomeprofilingoftheearlyinfectionofwheatrootsbygaeumannomycesgraminisvartritici AT chaoyueen comparativetranscriptomeprofilingoftheearlyinfectionofwheatrootsbygaeumannomycesgraminisvartritici AT wuchao comparativetranscriptomeprofilingoftheearlyinfectionofwheatrootsbygaeumannomycesgraminisvartritici |