Cargando…
ACOustic: A Nature-Inspired Exploration Indicator for Ant Colony Optimization
A statistical machine learning indicator, ACOustic, is proposed to evaluate the exploration behavior in the iterations of ant colony optimization algorithms. This idea is inspired by the behavior of some parasites in their mimicry to the queens' acoustics of their ant hosts. The parasites'...
Autores principales: | Sagban, Rafid, Ku-Mahamud, Ku Ruhana, Abu Bakar, Muhamad Shahbani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397471/ https://www.ncbi.nlm.nih.gov/pubmed/25954768 http://dx.doi.org/10.1155/2015/392345 |
Ejemplares similares
-
Tri-objective generator maintenance scheduling model based on sequential strategy
por: Muthana, Shatha Abdulhadi, et al.
Publicado: (2022) -
Link Prediction based on Quantum-Inspired Ant Colony Optimization
por: Cao, Zhiwei, et al.
Publicado: (2018) -
Exploration adjustment by ant colonies
por: Doran, Carolina, et al.
Publicado: (2016) -
A novel algorithm for parameter estimation of Hidden Markov Model inspired by Ant Colony Optimization
por: Emdadi, Akram, et al.
Publicado: (2019) -
Multi-objective de novo molecular design of organic structure-directing agents for zeolites using nature-inspired ant colony optimization
por: Muraoka, Koki, et al.
Publicado: (2020)