Cargando…
Danger Comes from All Fronts: Predator-Dependent Escape Tactics of Túngara Frogs
The escape response of an organism is generally its last line of defense against a predator. Because the effectiveness of an escape varies with the approach behaviour of the predator, it should be advantageous for prey to alter their escape trajectories depending on the mode of predator attack. To t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398479/ https://www.ncbi.nlm.nih.gov/pubmed/25874798 http://dx.doi.org/10.1371/journal.pone.0120546 |
Sumario: | The escape response of an organism is generally its last line of defense against a predator. Because the effectiveness of an escape varies with the approach behaviour of the predator, it should be advantageous for prey to alter their escape trajectories depending on the mode of predator attack. To test this hypothesis we examined the escape responses of a single prey species, the ground-dwelling túngara frog (Engystomops pustulosus), to disparate predators approaching from different spatial planes: a terrestrial predator (snake) and an aerial predator (bat). Túngara frogs showed consistently distinct escape responses when attacked by terrestrial versus aerial predators. The frogs fled away from the snake models (Median: 131°). In stark contrast, the frogs moved toward the bat models (Median: 27°); effectively undercutting the bat’s flight path. Our results reveal that prey escape trajectories reflect the specificity of their predators’ attacks. This study emphasizes the flexibility of strategies performed by prey to outcompete predators with diverse modes of attack. |
---|