Cargando…
Usage of Neural Network to Predict Aluminium Oxide Layer Thickness
This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperatur...
Autores principales: | Michal, Peter, Vagaská, Alena, Gombár, Miroslav, Kmec, Ján, Spišák, Emil, Kučerka, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398957/ https://www.ncbi.nlm.nih.gov/pubmed/25922850 http://dx.doi.org/10.1155/2015/253568 |
Ejemplares similares
-
Efficiency Optimization of the Electroerosive Process in µ-WEDM of Steel MS1 Sintered Using DMLS Technology
por: Straka, Ľuboslav, et al.
Publicado: (2022) -
Investigation of Surface Roughness and Predictive Modelling of Machining Stellite 6
por: Valíček, Jan, et al.
Publicado: (2019) -
Optimization of Electro-Discharge Texturing Parameters for Steel Sheets’ Finishing Rollers
por: Evin, Emil, et al.
Publicado: (2020) -
Frictional Behaviour of Composite Anodized Layers on Aluminium Alloys
por: Atraszkiewicz, Radomir, et al.
Publicado: (2020) -
Reflection of infrared radiation from thin aluminium layers
por: Calatroni, Sergio
Publicado: (2001)