Cargando…

TAZ regulates cell proliferation and epithelial–mesenchymal transition of human hepatocellular carcinoma

The transcriptional coactivator with PDZ binding motif (TAZ) has been reported to be one of the nuclear effectors of Hippo-related pathways. TAZ is expressed in many primary tumors and could regulate many biological processes. However, little is known about the role of TAZ in hepatocellular carcinom...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Heng, Jiang, Ning, Zhou, Baoyong, Liu, Qiang, Du, Chengyou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4399022/
https://www.ncbi.nlm.nih.gov/pubmed/25495189
http://dx.doi.org/10.1111/cas.12587
Descripción
Sumario:The transcriptional coactivator with PDZ binding motif (TAZ) has been reported to be one of the nuclear effectors of Hippo-related pathways. TAZ is expressed in many primary tumors and could regulate many biological processes. However, little is known about the role of TAZ in hepatocellular carcinoma (HCC). In the current study, we show that TAZ regulates cellular proliferation and epithelial–mesenchymal transition (EMT) of HCC. TAZ is overexpressed in HCC tissues and cell lines and upregulation of TAZ correlates with a lower overall survival rate of HCC patients after hepatic resection. TAZ knockdown results in inhibition of cancer cell proliferation through decreases in expression of stem cell markers (OCT4, Nanog, and SOX2). Reduction in HCC cell migration and invasion is also evident through reversal of EMT by increases E-cadherin expression, decreases in N-cadherin, vimentin, Snail, and Slug expression, and suppression of MMP-2 and MMP-9 expression. In a xenograft tumorigenicity model, TAZ knockdown could effectively inhibit tumor growth and metastasis through reversal of the EMT pathway. In conclusion, TAZ is associated with the proliferation and invasiveness of HCC cells, and the TAZ gene may contribute to a novel therapeutic approach against HCC.