Cargando…
Synthetic lethals in HIV: ways to avoid drug resistance: Running title: Preventing HIV resistance
BACKGROUND: RNA viruses rapidly accumulate genetic variation, which can give rise to synthetic lethal (SL) and deleterious (SD) mutations. Synthetic lethal mutations (non-lethal when alone but lethal when combined in one genome) have been studied to develop cancer therapies. This principle can also...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4399722/ https://www.ncbi.nlm.nih.gov/pubmed/25888435 http://dx.doi.org/10.1186/s13062-015-0044-y |
_version_ | 1782366962575212544 |
---|---|
author | Petitjean, Michel Badel, Anne Veitia, Reiner A Vanet, Anne |
author_facet | Petitjean, Michel Badel, Anne Veitia, Reiner A Vanet, Anne |
author_sort | Petitjean, Michel |
collection | PubMed |
description | BACKGROUND: RNA viruses rapidly accumulate genetic variation, which can give rise to synthetic lethal (SL) and deleterious (SD) mutations. Synthetic lethal mutations (non-lethal when alone but lethal when combined in one genome) have been studied to develop cancer therapies. This principle can also be used against fast-evolving RNA-viruses. Indeed, targeting protein sites involved in SD + SL interactions with a drug would render any mutation of such sites, lethal. RESULTS: Here, we set up a strategy to detect intragenic pairs of SL and SD at the surface of the protein to predict less escapable drug target sites. For this, we detected SD + SL, studying HIV protease (PR) and reverse transcriptase (RT) sequence alignments from two groups of VIH(+) individuals: treated with drugs (T) or not (NT). Using a series of statistical approaches, we were able to propose bona fide SD + SL couples. When focusing on spatially close co-variant SD + SL couples at the surface of the protein, we found 5 SD + SL groups (2 in the protease and 3 in the reverse transcriptase), which could be good candidates to form pockets to accommodate potential drugs. CONCLUSIONS: Thus, designing drugs targeting these specific SD + SL groups would not allow the virus to mutate any residue involved in such groups without losing an essential function. Moreover, we also show that the selection pressure induced by the treatment leads to the appearance of new mutations, which change the mutational landscape of the protein. This drives the existence of differential SD + SL couples between the drug-treated and non-treated groups. Thus, new anti-viral drugs should be designed differently to target such groups. REVIEWERS: This article was reviewed by Neil Greenspan Csaba Pal and István Simon. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13062-015-0044-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4399722 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43997222015-04-17 Synthetic lethals in HIV: ways to avoid drug resistance: Running title: Preventing HIV resistance Petitjean, Michel Badel, Anne Veitia, Reiner A Vanet, Anne Biol Direct Research BACKGROUND: RNA viruses rapidly accumulate genetic variation, which can give rise to synthetic lethal (SL) and deleterious (SD) mutations. Synthetic lethal mutations (non-lethal when alone but lethal when combined in one genome) have been studied to develop cancer therapies. This principle can also be used against fast-evolving RNA-viruses. Indeed, targeting protein sites involved in SD + SL interactions with a drug would render any mutation of such sites, lethal. RESULTS: Here, we set up a strategy to detect intragenic pairs of SL and SD at the surface of the protein to predict less escapable drug target sites. For this, we detected SD + SL, studying HIV protease (PR) and reverse transcriptase (RT) sequence alignments from two groups of VIH(+) individuals: treated with drugs (T) or not (NT). Using a series of statistical approaches, we were able to propose bona fide SD + SL couples. When focusing on spatially close co-variant SD + SL couples at the surface of the protein, we found 5 SD + SL groups (2 in the protease and 3 in the reverse transcriptase), which could be good candidates to form pockets to accommodate potential drugs. CONCLUSIONS: Thus, designing drugs targeting these specific SD + SL groups would not allow the virus to mutate any residue involved in such groups without losing an essential function. Moreover, we also show that the selection pressure induced by the treatment leads to the appearance of new mutations, which change the mutational landscape of the protein. This drives the existence of differential SD + SL couples between the drug-treated and non-treated groups. Thus, new anti-viral drugs should be designed differently to target such groups. REVIEWERS: This article was reviewed by Neil Greenspan Csaba Pal and István Simon. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13062-015-0044-y) contains supplementary material, which is available to authorized users. BioMed Central 2015-04-17 /pmc/articles/PMC4399722/ /pubmed/25888435 http://dx.doi.org/10.1186/s13062-015-0044-y Text en © Petitjean et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Petitjean, Michel Badel, Anne Veitia, Reiner A Vanet, Anne Synthetic lethals in HIV: ways to avoid drug resistance: Running title: Preventing HIV resistance |
title | Synthetic lethals in HIV: ways to avoid drug resistance: Running title: Preventing HIV resistance |
title_full | Synthetic lethals in HIV: ways to avoid drug resistance: Running title: Preventing HIV resistance |
title_fullStr | Synthetic lethals in HIV: ways to avoid drug resistance: Running title: Preventing HIV resistance |
title_full_unstemmed | Synthetic lethals in HIV: ways to avoid drug resistance: Running title: Preventing HIV resistance |
title_short | Synthetic lethals in HIV: ways to avoid drug resistance: Running title: Preventing HIV resistance |
title_sort | synthetic lethals in hiv: ways to avoid drug resistance: running title: preventing hiv resistance |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4399722/ https://www.ncbi.nlm.nih.gov/pubmed/25888435 http://dx.doi.org/10.1186/s13062-015-0044-y |
work_keys_str_mv | AT petitjeanmichel syntheticlethalsinhivwaystoavoiddrugresistancerunningtitlepreventinghivresistance AT badelanne syntheticlethalsinhivwaystoavoiddrugresistancerunningtitlepreventinghivresistance AT veitiareinera syntheticlethalsinhivwaystoavoiddrugresistancerunningtitlepreventinghivresistance AT vanetanne syntheticlethalsinhivwaystoavoiddrugresistancerunningtitlepreventinghivresistance |