Cargando…
NEMix: Single-cell Nested Effects Models for Probabilistic Pathway Stimulation
Nested effects models have been used successfully for learning subcellular networks from high-dimensional perturbation effects that result from RNA interference (RNAi) experiments. Here, we further develop the basic nested effects model using high-content single-cell imaging data from RNAi screens o...
Autores principales: | Siebourg-Polster, Juliane, Mudrak, Daria, Emmenlauer, Mario, Rämö, Pauli, Dehio, Christoph, Greber, Urs, Fröhlich, Holger, Beerenwinkel, Niko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400057/ https://www.ncbi.nlm.nih.gov/pubmed/25879530 http://dx.doi.org/10.1371/journal.pcbi.1004078 |
Ejemplares similares
-
PyBDA: a command line tool for automated analysis of big biological data sets
por: Dirmeier, Simon, et al.
Publicado: (2019) -
Improved pathway reconstruction from RNA interference screens by exploiting off-target effects
por: Srivatsa, Sumana, et al.
Publicado: (2018) -
Multi-scale Gaussian representation and outline-learning based cell image segmentation
por: Farhan, Muhammad, et al.
Publicado: (2013) -
Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in Listeria Infection and Reveals Different Actin Nucleation Mechanisms during Listeria Cell Invasion and Actin Comet Tail Formation
por: Kühbacher, Andreas, et al.
Publicado: (2015) -
Simultaneous analysis of large-scale RNAi screens for pathogen entry
por: Rämö, Pauli, et al.
Publicado: (2014)