Cargando…
Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation
Sulfate is an essential nutrient with pronounced regulatory effects on cellular metabolism and proliferation. Little is known, however, about how sulfate is sensed by cells. Sul1 and Sul2 are sulfate transporters in the yeast Saccharomyces cerevisiae, strongly induced upon sulfur starvation and endo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400352/ https://www.ncbi.nlm.nih.gov/pubmed/25724649 http://dx.doi.org/10.1074/jbc.M114.629022 |
_version_ | 1782367010762522624 |
---|---|
author | Kankipati, Harish Nag Rubio-Texeira, Marta Castermans, Dries Diallinas, George Thevelein, Johan M. |
author_facet | Kankipati, Harish Nag Rubio-Texeira, Marta Castermans, Dries Diallinas, George Thevelein, Johan M. |
author_sort | Kankipati, Harish Nag |
collection | PubMed |
description | Sulfate is an essential nutrient with pronounced regulatory effects on cellular metabolism and proliferation. Little is known, however, about how sulfate is sensed by cells. Sul1 and Sul2 are sulfate transporters in the yeast Saccharomyces cerevisiae, strongly induced upon sulfur starvation and endocytosed upon the addition of sulfate. We reveal Sul1,2-dependent activation of PKA targets upon sulfate-induced exit from growth arrest after sulfur starvation. We provide two major arguments in favor of Sul1 and Sul2 acting as transceptors for signaling to PKA. First, the sulfate analogue, d-glucosamine 2-sulfate, acted as a non-transported agonist of signaling by Sul1 and Sul2. Second, mutagenesis to Gln of putative H(+)-binding residues, Glu-427 in Sul1 or Glu-443 in Sul2, abolished transport without affecting signaling. Hence, Sul1,2 can function as pure sulfate sensors. Sul1(E427Q) and Sul2(E443Q) are also deficient in sulfate-induced endocytosis, which can therefore be uncoupled from signaling. Overall, our data suggest that transceptors can undergo independent conformational changes, each responsible for triggering different downstream processes. The Sul1 and Sul2 transceptors are the first identified plasma membrane sensors for extracellular sulfate. High affinity transporters induced upon starvation for their substrate may generally act as transceptors during exit from starvation. |
format | Online Article Text |
id | pubmed-4400352 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-44003522015-04-24 Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation Kankipati, Harish Nag Rubio-Texeira, Marta Castermans, Dries Diallinas, George Thevelein, Johan M. J Biol Chem Signal Transduction Sulfate is an essential nutrient with pronounced regulatory effects on cellular metabolism and proliferation. Little is known, however, about how sulfate is sensed by cells. Sul1 and Sul2 are sulfate transporters in the yeast Saccharomyces cerevisiae, strongly induced upon sulfur starvation and endocytosed upon the addition of sulfate. We reveal Sul1,2-dependent activation of PKA targets upon sulfate-induced exit from growth arrest after sulfur starvation. We provide two major arguments in favor of Sul1 and Sul2 acting as transceptors for signaling to PKA. First, the sulfate analogue, d-glucosamine 2-sulfate, acted as a non-transported agonist of signaling by Sul1 and Sul2. Second, mutagenesis to Gln of putative H(+)-binding residues, Glu-427 in Sul1 or Glu-443 in Sul2, abolished transport without affecting signaling. Hence, Sul1,2 can function as pure sulfate sensors. Sul1(E427Q) and Sul2(E443Q) are also deficient in sulfate-induced endocytosis, which can therefore be uncoupled from signaling. Overall, our data suggest that transceptors can undergo independent conformational changes, each responsible for triggering different downstream processes. The Sul1 and Sul2 transceptors are the first identified plasma membrane sensors for extracellular sulfate. High affinity transporters induced upon starvation for their substrate may generally act as transceptors during exit from starvation. American Society for Biochemistry and Molecular Biology 2015-04-17 2015-02-27 /pmc/articles/PMC4400352/ /pubmed/25724649 http://dx.doi.org/10.1074/jbc.M114.629022 Text en © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version full access. Creative Commons Attribution Unported License (http://creativecommons.org/licenses/by/3.0/) applies to Author Choice Articles |
spellingShingle | Signal Transduction Kankipati, Harish Nag Rubio-Texeira, Marta Castermans, Dries Diallinas, George Thevelein, Johan M. Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation |
title | Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation |
title_full | Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation |
title_fullStr | Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation |
title_full_unstemmed | Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation |
title_short | Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation |
title_sort | sul1 and sul2 sulfate transceptors signal to protein kinase a upon exit of sulfur starvation |
topic | Signal Transduction |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400352/ https://www.ncbi.nlm.nih.gov/pubmed/25724649 http://dx.doi.org/10.1074/jbc.M114.629022 |
work_keys_str_mv | AT kankipatiharishnag sul1andsul2sulfatetransceptorssignaltoproteinkinaseauponexitofsulfurstarvation AT rubiotexeiramarta sul1andsul2sulfatetransceptorssignaltoproteinkinaseauponexitofsulfurstarvation AT castermansdries sul1andsul2sulfatetransceptorssignaltoproteinkinaseauponexitofsulfurstarvation AT diallinasgeorge sul1andsul2sulfatetransceptorssignaltoproteinkinaseauponexitofsulfurstarvation AT theveleinjohanm sul1andsul2sulfatetransceptorssignaltoproteinkinaseauponexitofsulfurstarvation |