Cargando…
Brain-Derived Neurotrophic Factor Regulates TRPC3/6 Channels and Protects Against Myocardial Infarction in Rodents
Background: Brain-derived neurotrophic factor (BDNF) is associated with coronary artery diseases. However, its role and mechanism in myocardial infarction (MI) is not fully understood. Methods: Wistar rat and Kunming mouse model of MI were induced by the ligation of left coronary artery. Blood sampl...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400385/ https://www.ncbi.nlm.nih.gov/pubmed/25892961 http://dx.doi.org/10.7150/ijbs.10754 |
_version_ | 1782367014184026112 |
---|---|
author | Hang, Pengzhou Zhao, Jing Cai, Benzhi Tian, Shanshan Huang, Wei Guo, Jing Sun, Chuan Li, Yue Du, Zhimin |
author_facet | Hang, Pengzhou Zhao, Jing Cai, Benzhi Tian, Shanshan Huang, Wei Guo, Jing Sun, Chuan Li, Yue Du, Zhimin |
author_sort | Hang, Pengzhou |
collection | PubMed |
description | Background: Brain-derived neurotrophic factor (BDNF) is associated with coronary artery diseases. However, its role and mechanism in myocardial infarction (MI) is not fully understood. Methods: Wistar rat and Kunming mouse model of MI were induced by the ligation of left coronary artery. Blood samples were collected from MI rats and patients. Plasma BDNF level, protein expression of BDNF, tropomyosin-related kinase B (TrkB) and its downstream transient receptor potential canonical (TRPC)3/6 channels were examined by enzyme-linked immunosorbent assay and Western blot. Infarct size, cardiac function and cardiomyocyte apoptosis were measured after intra-myocardium injection with recombinant human BDNF. Protective role of BDNF against cardiomyocyte apoptosis was confirmed by BDNF scavenger TrkB-Fc. The regulation of TRPC3/6 channels by BDNF was validated by pretreating with TRPC blocker (2-Aminoethyl diphenylborinate, 2-APB) and TRPC3/6 siRNAs. Results: Circulating BDNF was significantly enhanced in MI rats and patients. Protein expression of BDNF, TrkB and TRPC3/6 channels were upregulated in MI. 3 days post-MI, BDNF treatment markedly reduced the infarct size and serum lactate dehydrogenase activity. Meanwhile, echocardiography indicated that BDNF significantly improved cardiac function of MI mice. Furthermore, BDNF markedly inhibited cardiomyocyte apoptosis by upregulating Bcl-2 expression and downregulating caspase-3 expression and activity in ischemic myocardium. In neonatal rat ventricular myocytes, cell viability was dramatically increased by BDNF in hypoxia, which was restored by TrkB-Fc. Furthermore, protective role of BDNF against hypoxia-induced apoptosis was reversed by 2-APB and TRPC3/6 siRNAs. Conclusion: BDNF/TrkB alleviated cardiac ischemic injury and inhibited cardiomyocytes apoptosis by regulating TRPC3/6 channels, which provides a novel potential therapeutic candidate for MI. |
format | Online Article Text |
id | pubmed-4400385 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-44003852015-04-17 Brain-Derived Neurotrophic Factor Regulates TRPC3/6 Channels and Protects Against Myocardial Infarction in Rodents Hang, Pengzhou Zhao, Jing Cai, Benzhi Tian, Shanshan Huang, Wei Guo, Jing Sun, Chuan Li, Yue Du, Zhimin Int J Biol Sci Research Paper Background: Brain-derived neurotrophic factor (BDNF) is associated with coronary artery diseases. However, its role and mechanism in myocardial infarction (MI) is not fully understood. Methods: Wistar rat and Kunming mouse model of MI were induced by the ligation of left coronary artery. Blood samples were collected from MI rats and patients. Plasma BDNF level, protein expression of BDNF, tropomyosin-related kinase B (TrkB) and its downstream transient receptor potential canonical (TRPC)3/6 channels were examined by enzyme-linked immunosorbent assay and Western blot. Infarct size, cardiac function and cardiomyocyte apoptosis were measured after intra-myocardium injection with recombinant human BDNF. Protective role of BDNF against cardiomyocyte apoptosis was confirmed by BDNF scavenger TrkB-Fc. The regulation of TRPC3/6 channels by BDNF was validated by pretreating with TRPC blocker (2-Aminoethyl diphenylborinate, 2-APB) and TRPC3/6 siRNAs. Results: Circulating BDNF was significantly enhanced in MI rats and patients. Protein expression of BDNF, TrkB and TRPC3/6 channels were upregulated in MI. 3 days post-MI, BDNF treatment markedly reduced the infarct size and serum lactate dehydrogenase activity. Meanwhile, echocardiography indicated that BDNF significantly improved cardiac function of MI mice. Furthermore, BDNF markedly inhibited cardiomyocyte apoptosis by upregulating Bcl-2 expression and downregulating caspase-3 expression and activity in ischemic myocardium. In neonatal rat ventricular myocytes, cell viability was dramatically increased by BDNF in hypoxia, which was restored by TrkB-Fc. Furthermore, protective role of BDNF against hypoxia-induced apoptosis was reversed by 2-APB and TRPC3/6 siRNAs. Conclusion: BDNF/TrkB alleviated cardiac ischemic injury and inhibited cardiomyocytes apoptosis by regulating TRPC3/6 channels, which provides a novel potential therapeutic candidate for MI. Ivyspring International Publisher 2015-03-25 /pmc/articles/PMC4400385/ /pubmed/25892961 http://dx.doi.org/10.7150/ijbs.10754 Text en © 2015 Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions. |
spellingShingle | Research Paper Hang, Pengzhou Zhao, Jing Cai, Benzhi Tian, Shanshan Huang, Wei Guo, Jing Sun, Chuan Li, Yue Du, Zhimin Brain-Derived Neurotrophic Factor Regulates TRPC3/6 Channels and Protects Against Myocardial Infarction in Rodents |
title | Brain-Derived Neurotrophic Factor Regulates TRPC3/6 Channels and Protects Against Myocardial Infarction in Rodents |
title_full | Brain-Derived Neurotrophic Factor Regulates TRPC3/6 Channels and Protects Against Myocardial Infarction in Rodents |
title_fullStr | Brain-Derived Neurotrophic Factor Regulates TRPC3/6 Channels and Protects Against Myocardial Infarction in Rodents |
title_full_unstemmed | Brain-Derived Neurotrophic Factor Regulates TRPC3/6 Channels and Protects Against Myocardial Infarction in Rodents |
title_short | Brain-Derived Neurotrophic Factor Regulates TRPC3/6 Channels and Protects Against Myocardial Infarction in Rodents |
title_sort | brain-derived neurotrophic factor regulates trpc3/6 channels and protects against myocardial infarction in rodents |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400385/ https://www.ncbi.nlm.nih.gov/pubmed/25892961 http://dx.doi.org/10.7150/ijbs.10754 |
work_keys_str_mv | AT hangpengzhou brainderivedneurotrophicfactorregulatestrpc36channelsandprotectsagainstmyocardialinfarctioninrodents AT zhaojing brainderivedneurotrophicfactorregulatestrpc36channelsandprotectsagainstmyocardialinfarctioninrodents AT caibenzhi brainderivedneurotrophicfactorregulatestrpc36channelsandprotectsagainstmyocardialinfarctioninrodents AT tianshanshan brainderivedneurotrophicfactorregulatestrpc36channelsandprotectsagainstmyocardialinfarctioninrodents AT huangwei brainderivedneurotrophicfactorregulatestrpc36channelsandprotectsagainstmyocardialinfarctioninrodents AT guojing brainderivedneurotrophicfactorregulatestrpc36channelsandprotectsagainstmyocardialinfarctioninrodents AT sunchuan brainderivedneurotrophicfactorregulatestrpc36channelsandprotectsagainstmyocardialinfarctioninrodents AT liyue brainderivedneurotrophicfactorregulatestrpc36channelsandprotectsagainstmyocardialinfarctioninrodents AT duzhimin brainderivedneurotrophicfactorregulatestrpc36channelsandprotectsagainstmyocardialinfarctioninrodents |