Cargando…

Dengue on islands: a Bayesian approach to understanding the global ecology of dengue viruses

BACKGROUND: Transmission of dengue viruses (DENV), the most common arboviral pathogens globally, is influenced by many climatic and socioeconomic factors. However, the relative contributions of these factors on a global scale are unclear. METHODS: We randomly selected 94 islands stratified by socioe...

Descripción completa

Detalles Bibliográficos
Autores principales: Feldstein, Leora R., Brownstein, John S., Brady, Oliver J., Hay, Simon I., Johansson, Michael A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401210/
https://www.ncbi.nlm.nih.gov/pubmed/25771261
http://dx.doi.org/10.1093/trstmh/trv012
Descripción
Sumario:BACKGROUND: Transmission of dengue viruses (DENV), the most common arboviral pathogens globally, is influenced by many climatic and socioeconomic factors. However, the relative contributions of these factors on a global scale are unclear. METHODS: We randomly selected 94 islands stratified by socioeconomic and geographic characteristics. With a Bayesian model, we assessed factors contributing to the probability of islands having a history of any dengue outbreaks and of having frequent outbreaks. RESULTS: Minimum temperature was strongly associated with suitability for DENV transmission. Islands with a minimum monthly temperature of greater than 14.8°C (95% CI: 12.4–16.6°C) were predicted to be suitable for DENV transmission. Increased population size and precipitation were associated with increased outbreak frequency, but did not capture all of the variability. Predictions for 48 testing islands verified these findings. CONCLUSIONS: This analysis clarified two key components of DENV ecology: minimum temperature was the most important determinant of suitability; and endemicity was more likely in areas with high precipitation and large, but not necessarily dense, populations. Wealth and connectivity, in contrast, had no discernable effects. This model adds to our knowledge of global determinants of dengue risk and provides a basis for understanding the ecology of dengue endemicity.