Cargando…

β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis

Non-ribosomal peptide synthetases (NRPSs) are giant enzymes comprised of modules that house repeated sets of functional domains, which select, activate and couple amino acids drawn from a pool of nearly 500 potential building blocks.(1) The structurally and stereochemically diverse peptides generate...

Descripción completa

Detalles Bibliográficos
Autores principales: Gaudelli, Nicole M., Long, Darcie H., Townsend, Craig A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401618/
https://www.ncbi.nlm.nih.gov/pubmed/25624104
http://dx.doi.org/10.1038/nature14100
Descripción
Sumario:Non-ribosomal peptide synthetases (NRPSs) are giant enzymes comprised of modules that house repeated sets of functional domains, which select, activate and couple amino acids drawn from a pool of nearly 500 potential building blocks.(1) The structurally and stereochemically diverse peptides generated in this manner underlie the biosynthesis of a large sector of natural products. Many of their derived metabolites are bioactive such as the antibiotics vancomycin, bacitracin, daptomycin and the β-lactam-containing penicillins, cephalosporins and nocardicins. Although penicillins and cephalosporins are synthesised from a classically derived NRPS tripeptide (from ACVS, δ-(L-α-aminoadipyl)–L-cysteinyl–D-valine synthetase)(2), we now report an unprecedented NRPS activity to both assemble a serine-containing peptide and mediate its cyclisation to the critical β-lactam ring of the nocardicin family of antibiotics. A histidine-rich condensation (C) domain, which typically carries out peptide bond formation during product assembly, was found to also synthesise the embedded 4-membered ring. Here, a mechanism is proposed and supporting experiments are described, which is distinct from the pathways that have evolved to the three other β-lactam antibiotic families: penicillin/cephalosporins, clavams and carbapenems. These findings raise the possibility that β-lactam rings can be regio- and stereospecifically integrated into engineered peptides for application as, for example, targeted protease inactivators.(3,4)