Cargando…
Radiation and Dual Checkpoint Blockade Activates Non-Redundant Immune Mechanisms in Cancer
Immune checkpoint inhibitors(1) result in impressive clinical responses(2–5) but optimal results will require combination with each other(6) and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here, we report major tumor regressions in a subset o...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401634/ https://www.ncbi.nlm.nih.gov/pubmed/25754329 http://dx.doi.org/10.1038/nature14292 |
_version_ | 1782367165718986752 |
---|---|
author | Victor, Christina Twyman-Saint Rech, Andrew J. Maity, Amit Rengan, Ramesh Pauken, Kristen E. Stelekati, Erietta Benci, Joseph L. Xu, Bihui Dada, Hannah Odorizzi, Pamela M. Herati, Ramin S. Mansfield, Kathleen D. Patsch, Dana Amaravadi, Ravi K. Schuchter, Lynn M. Ishwaran, Hemant Mick, Rosemarie Pryma, Daniel A. Xu, Xiaowei Feldman, Michael D. Gangadhar, Tara C. Hahn, Stephen M. Wherry, E. John Vonderheide, Robert H. Minn, Andy J. |
author_facet | Victor, Christina Twyman-Saint Rech, Andrew J. Maity, Amit Rengan, Ramesh Pauken, Kristen E. Stelekati, Erietta Benci, Joseph L. Xu, Bihui Dada, Hannah Odorizzi, Pamela M. Herati, Ramin S. Mansfield, Kathleen D. Patsch, Dana Amaravadi, Ravi K. Schuchter, Lynn M. Ishwaran, Hemant Mick, Rosemarie Pryma, Daniel A. Xu, Xiaowei Feldman, Michael D. Gangadhar, Tara C. Hahn, Stephen M. Wherry, E. John Vonderheide, Robert H. Minn, Andy J. |
author_sort | Victor, Christina Twyman-Saint |
collection | PubMed |
description | Immune checkpoint inhibitors(1) result in impressive clinical responses(2–5) but optimal results will require combination with each other(6) and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here, we report major tumor regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation (RT) and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumors, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires RT, anti-CTLA4, and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T regulatory cells (Tregs) to increase the CD8 T cell to Treg (CD8/Treg) ratio. RT enhances the diversity of the T cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while RT shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligo-clonal T cell expansion. Similar to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to RT + anti-CTLA4, demonstrated persistent T cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumors to escape anti-CTLA4-based therapy, and the combination of RT, anti-CTLA4, and anti-PD-L1 promotes response and immunity through distinct mechanisms. |
format | Online Article Text |
id | pubmed-4401634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
record_format | MEDLINE/PubMed |
spelling | pubmed-44016342015-10-16 Radiation and Dual Checkpoint Blockade Activates Non-Redundant Immune Mechanisms in Cancer Victor, Christina Twyman-Saint Rech, Andrew J. Maity, Amit Rengan, Ramesh Pauken, Kristen E. Stelekati, Erietta Benci, Joseph L. Xu, Bihui Dada, Hannah Odorizzi, Pamela M. Herati, Ramin S. Mansfield, Kathleen D. Patsch, Dana Amaravadi, Ravi K. Schuchter, Lynn M. Ishwaran, Hemant Mick, Rosemarie Pryma, Daniel A. Xu, Xiaowei Feldman, Michael D. Gangadhar, Tara C. Hahn, Stephen M. Wherry, E. John Vonderheide, Robert H. Minn, Andy J. Nature Article Immune checkpoint inhibitors(1) result in impressive clinical responses(2–5) but optimal results will require combination with each other(6) and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here, we report major tumor regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation (RT) and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumors, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires RT, anti-CTLA4, and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T regulatory cells (Tregs) to increase the CD8 T cell to Treg (CD8/Treg) ratio. RT enhances the diversity of the T cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while RT shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligo-clonal T cell expansion. Similar to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to RT + anti-CTLA4, demonstrated persistent T cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumors to escape anti-CTLA4-based therapy, and the combination of RT, anti-CTLA4, and anti-PD-L1 promotes response and immunity through distinct mechanisms. 2015-03-09 2015-04-16 /pmc/articles/PMC4401634/ /pubmed/25754329 http://dx.doi.org/10.1038/nature14292 Text en Reprints and permissions information is available at www.nature.com/reprints |
spellingShingle | Article Victor, Christina Twyman-Saint Rech, Andrew J. Maity, Amit Rengan, Ramesh Pauken, Kristen E. Stelekati, Erietta Benci, Joseph L. Xu, Bihui Dada, Hannah Odorizzi, Pamela M. Herati, Ramin S. Mansfield, Kathleen D. Patsch, Dana Amaravadi, Ravi K. Schuchter, Lynn M. Ishwaran, Hemant Mick, Rosemarie Pryma, Daniel A. Xu, Xiaowei Feldman, Michael D. Gangadhar, Tara C. Hahn, Stephen M. Wherry, E. John Vonderheide, Robert H. Minn, Andy J. Radiation and Dual Checkpoint Blockade Activates Non-Redundant Immune Mechanisms in Cancer |
title | Radiation and Dual Checkpoint Blockade Activates Non-Redundant Immune Mechanisms in Cancer |
title_full | Radiation and Dual Checkpoint Blockade Activates Non-Redundant Immune Mechanisms in Cancer |
title_fullStr | Radiation and Dual Checkpoint Blockade Activates Non-Redundant Immune Mechanisms in Cancer |
title_full_unstemmed | Radiation and Dual Checkpoint Blockade Activates Non-Redundant Immune Mechanisms in Cancer |
title_short | Radiation and Dual Checkpoint Blockade Activates Non-Redundant Immune Mechanisms in Cancer |
title_sort | radiation and dual checkpoint blockade activates non-redundant immune mechanisms in cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401634/ https://www.ncbi.nlm.nih.gov/pubmed/25754329 http://dx.doi.org/10.1038/nature14292 |
work_keys_str_mv | AT victorchristinatwymansaint radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT rechandrewj radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT maityamit radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT renganramesh radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT paukenkristene radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT stelekatierietta radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT bencijosephl radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT xubihui radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT dadahannah radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT odorizzipamelam radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT heratiramins radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT mansfieldkathleend radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT patschdana radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT amaravadiravik radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT schuchterlynnm radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT ishwaranhemant radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT mickrosemarie radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT prymadaniela radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT xuxiaowei radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT feldmanmichaeld radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT gangadhartarac radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT hahnstephenm radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT wherryejohn radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT vonderheideroberth radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer AT minnandyj radiationanddualcheckpointblockadeactivatesnonredundantimmunemechanismsincancer |