Cargando…
Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator
Introduction: Preoperative characterisation of ovarian masses into benign or malignant is of paramount importance to optimise patient management. Objectives: In this study, we developed and validated a computerised model to characterise ovarian masses as benign or malignant. Materials and methods: T...
Autores principales: | Khazendar, S., Sayasneh, A., Al-Assam, H., Du, H., Kaijser, J., Ferrara, L., Timmerman, D., Jassim, S., Bourne, T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Universa Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402446/ https://www.ncbi.nlm.nih.gov/pubmed/25897367 |
Ejemplares similares
-
Evaluation of machine learning methods with Fourier Transform features for classifying ovarian tumors based on ultrasound images
por: Martínez-Más, José, et al.
Publicado: (2019) -
The characteristic ultrasound features of specific types of ovarian pathology (Review)
por: SAYASNEH, AHMAD, et al.
Publicado: (2014) -
Key findings from the International Ovarian Tumor Analysis (IOTA) study: an approach to the optimal ultrasound based characterisation of adnexal pathology
por: Kaijser, Jeroen, et al.
Publicado: (2015) -
Evaluating the risk of ovarian cancer before surgery using the ADNEX model: a multicentre external validation study
por: Sayasneh, A, et al.
Publicado: (2016) -
Characterisation of seven human ovarian tumour cell lines.
por: Wilson, A. P., et al.
Publicado: (1996)