Cargando…
A New Approach to Define and Diagnose Cardiometabolic Disorder in Children
The aim of the study was to test the performance of a new definition of metabolic syndrome (MetS), which better describes metabolic dysfunction in children. Methods. 15,794 youths aged 6–18 years participated. Mean z-score for CVD risk factors was calculated. Sensitivity analyses were performed to e...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402570/ https://www.ncbi.nlm.nih.gov/pubmed/25945355 http://dx.doi.org/10.1155/2015/539835 |
Sumario: | The aim of the study was to test the performance of a new definition of metabolic syndrome (MetS), which better describes metabolic dysfunction in children. Methods. 15,794 youths aged 6–18 years participated. Mean z-score for CVD risk factors was calculated. Sensitivity analyses were performed to evaluate which parameters best described the metabolic dysfunction by analysing the score against independent variables not included in the score. Results. More youth had clustering of CVD risk factors (>6.2%) compared to the number selected by existing MetS definitions (International Diabetes Federation (IDF) < 1%). Waist circumference and BMI were interchangeable, but using insulin resistance homeostasis model assessment (HOMA) instead of fasting glucose increased the score. The continuous MetS score was increased when cardiorespiratory fitness (CRF) and leptin were included. A mean z-score of 0.40–0.85 indicated borderline and above 0.85 indicated clustering of risk factors. A noninvasive risk score based on adiposity and CRF showed sensitivity and specificity of 0.85 and an area under the curve of 0.92 against IDF definition of MetS. Conclusions. Diagnosis for MetS in youth can be improved by using continuous variables for risk factors and by including CRF and leptin. |
---|