Cargando…

Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation

Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new detai...

Descripción completa

Detalles Bibliográficos
Autores principales: Janissen, Richard, Murillo, Duber M., Niza, Barbara, Sahoo, Prasana K., Nobrega, Marcelo M., Cesar, Carlos L., Temperini, Marcia L. A., Carvalho, Hernandes F., de Souza, Alessandra A., Cotta, Monica A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402645/
https://www.ncbi.nlm.nih.gov/pubmed/25891045
http://dx.doi.org/10.1038/srep09856
_version_ 1782367287286693888
author Janissen, Richard
Murillo, Duber M.
Niza, Barbara
Sahoo, Prasana K.
Nobrega, Marcelo M.
Cesar, Carlos L.
Temperini, Marcia L. A.
Carvalho, Hernandes F.
de Souza, Alessandra A.
Cotta, Monica A.
author_facet Janissen, Richard
Murillo, Duber M.
Niza, Barbara
Sahoo, Prasana K.
Nobrega, Marcelo M.
Cesar, Carlos L.
Temperini, Marcia L. A.
Carvalho, Hernandes F.
de Souza, Alessandra A.
Cotta, Monica A.
author_sort Janissen, Richard
collection PubMed
description Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.
format Online
Article
Text
id pubmed-4402645
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-44026452015-04-29 Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation Janissen, Richard Murillo, Duber M. Niza, Barbara Sahoo, Prasana K. Nobrega, Marcelo M. Cesar, Carlos L. Temperini, Marcia L. A. Carvalho, Hernandes F. de Souza, Alessandra A. Cotta, Monica A. Sci Rep Article Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. Nature Publishing Group 2015-04-20 /pmc/articles/PMC4402645/ /pubmed/25891045 http://dx.doi.org/10.1038/srep09856 Text en Copyright © 2015, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Janissen, Richard
Murillo, Duber M.
Niza, Barbara
Sahoo, Prasana K.
Nobrega, Marcelo M.
Cesar, Carlos L.
Temperini, Marcia L. A.
Carvalho, Hernandes F.
de Souza, Alessandra A.
Cotta, Monica A.
Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation
title Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation
title_full Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation
title_fullStr Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation
title_full_unstemmed Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation
title_short Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation
title_sort spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate xylella fastidiosa adhesion and biofilm formation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402645/
https://www.ncbi.nlm.nih.gov/pubmed/25891045
http://dx.doi.org/10.1038/srep09856
work_keys_str_mv AT janissenrichard spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation
AT murilloduberm spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation
AT nizabarbara spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation
AT sahooprasanak spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation
AT nobregamarcelom spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation
AT cesarcarlosl spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation
AT temperinimarciala spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation
AT carvalhohernandesf spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation
AT desouzaalessandraa spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation
AT cottamonicaa spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation