Cargando…
Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation
Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new detai...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402645/ https://www.ncbi.nlm.nih.gov/pubmed/25891045 http://dx.doi.org/10.1038/srep09856 |
_version_ | 1782367287286693888 |
---|---|
author | Janissen, Richard Murillo, Duber M. Niza, Barbara Sahoo, Prasana K. Nobrega, Marcelo M. Cesar, Carlos L. Temperini, Marcia L. A. Carvalho, Hernandes F. de Souza, Alessandra A. Cotta, Monica A. |
author_facet | Janissen, Richard Murillo, Duber M. Niza, Barbara Sahoo, Prasana K. Nobrega, Marcelo M. Cesar, Carlos L. Temperini, Marcia L. A. Carvalho, Hernandes F. de Souza, Alessandra A. Cotta, Monica A. |
author_sort | Janissen, Richard |
collection | PubMed |
description | Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. |
format | Online Article Text |
id | pubmed-4402645 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-44026452015-04-29 Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation Janissen, Richard Murillo, Duber M. Niza, Barbara Sahoo, Prasana K. Nobrega, Marcelo M. Cesar, Carlos L. Temperini, Marcia L. A. Carvalho, Hernandes F. de Souza, Alessandra A. Cotta, Monica A. Sci Rep Article Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. Nature Publishing Group 2015-04-20 /pmc/articles/PMC4402645/ /pubmed/25891045 http://dx.doi.org/10.1038/srep09856 Text en Copyright © 2015, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Janissen, Richard Murillo, Duber M. Niza, Barbara Sahoo, Prasana K. Nobrega, Marcelo M. Cesar, Carlos L. Temperini, Marcia L. A. Carvalho, Hernandes F. de Souza, Alessandra A. Cotta, Monica A. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation |
title | Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation |
title_full | Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation |
title_fullStr | Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation |
title_full_unstemmed | Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation |
title_short | Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation |
title_sort | spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate xylella fastidiosa adhesion and biofilm formation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402645/ https://www.ncbi.nlm.nih.gov/pubmed/25891045 http://dx.doi.org/10.1038/srep09856 |
work_keys_str_mv | AT janissenrichard spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation AT murilloduberm spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation AT nizabarbara spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation AT sahooprasanak spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation AT nobregamarcelom spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation AT cesarcarlosl spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation AT temperinimarciala spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation AT carvalhohernandesf spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation AT desouzaalessandraa spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation AT cottamonicaa spatiotemporaldistributionofdifferentextracellularpolymericsubstancesandfilamentationmediatexylellafastidiosaadhesionandbiofilmformation |