Cargando…
Using epigenomics data to predict gene expression in lung cancer
BACKGROUND: Epigenetic alterations are known to correlate with changes in gene expression among various diseases including cancers. However, quantitative models that accurately predict the up or down regulation of gene expression are currently lacking. METHODS: A new machine learning-based method of...
Autores principales: | Li, Jeffery, Ching, Travers, Huang, Sijia, Garmire, Lana X |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402699/ https://www.ncbi.nlm.nih.gov/pubmed/25861082 http://dx.doi.org/10.1186/1471-2105-16-S5-S10 |
Ejemplares similares
-
Power analysis and sample size estimation for RNA-Seq differential expression
por: Ching, Travers, et al.
Publicado: (2014) -
A Novel Model to Combine Clinical and Pathway-Based Transcriptomic Information for the Prognosis Prediction of Breast Cancer
por: Huang, Sijia, et al.
Publicado: (2014) -
Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data
por: Ching, Travers, et al.
Publicado: (2018) -
mirMark: a site-level and UTR-level classifier for miRNA target prediction
por: Menor, Mark, et al.
Publicado: (2014) -
More Is Better: Recent Progress in Multi-Omics Data Integration Methods
por: Huang, Sijia, et al.
Publicado: (2017)