Cargando…

Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology

Drugs targeting atrial-specific ion channels, K(v)1.5 or K(ir)3.1/3.4, are being developed as new therapeutic strategies for atrial fibrillation. However, current preclinical studies carried out in non-cardiac cell lines or animal models may not accurately represent the physiology of a human cardiom...

Descripción completa

Detalles Bibliográficos
Autores principales: Devalla, Harsha D, Schwach, Verena, Ford, John W, Milnes, James T, El-Haou, Said, Jackson, Claire, Gkatzis, Konstantinos, Elliott, David A, Chuva de Sousa Lopes, Susana M, Mummery, Christine L, Verkerk, Arie O, Passier, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403042/
https://www.ncbi.nlm.nih.gov/pubmed/25700171
http://dx.doi.org/10.15252/emmm.201404757
Descripción
Sumario:Drugs targeting atrial-specific ion channels, K(v)1.5 or K(ir)3.1/3.4, are being developed as new therapeutic strategies for atrial fibrillation. However, current preclinical studies carried out in non-cardiac cell lines or animal models may not accurately represent the physiology of a human cardiomyocyte (CM). In the current study, we tested whether human embryonic stem cell (hESC)-derived atrial CMs could predict atrial selectivity of pharmacological compounds. By modulating retinoic acid signaling during hESC differentiation, we generated atrial-like (hESC-atrial) and ventricular-like (hESC-ventricular) CMs. We found the expression of atrial-specific ion channel genes, KCNA5 (encoding Kv1.5) and KCNJ3 (encoding K(ir) 3.1), in hESC-atrial CMs and further demonstrated that these ion channel genes are regulated by COUP-TF transcription factors. Moreover, in response to multiple ion channel blocker, vernakalant, and K(v)1.5 blocker, XEN-D0101, hESC-atrial but not hESC-ventricular CMs showed action potential (AP) prolongation due to a reduction in early repolarization. In hESC-atrial CMs, XEN-R0703, a novel K(ir)3.1/3.4 blocker restored the AP shortening caused by CCh. Neither CCh nor XEN-R0703 had an effect on hESC-ventricular CMs. In summary, we demonstrate that hESC-atrial CMs are a robust model for pre-clinical testing to assess atrial selectivity of novel antiarrhythmic drugs.