Cargando…

Preparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior

Various nanoparticles have been investigated as novel drug delivery systems, including solid lipid nanoparticles (SLNs). Due to their rapid clearance from systemic circulation, nanoparticles do not provide sustained action in most cases. Different strategies have been employed to overcome this probl...

Descripción completa

Detalles Bibliográficos
Autores principales: Dorraj, Golnar, Moghimi, Hamid Reza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403051/
https://www.ncbi.nlm.nih.gov/pubmed/25901142
_version_ 1782367307635359744
author Dorraj, Golnar
Moghimi, Hamid Reza
author_facet Dorraj, Golnar
Moghimi, Hamid Reza
author_sort Dorraj, Golnar
collection PubMed
description Various nanoparticles have been investigated as novel drug delivery systems, including solid lipid nanoparticles (SLNs). Due to their rapid clearance from systemic circulation, nanoparticles do not provide sustained action in most cases. Different strategies have been employed to overcome this problem. In this direction, the present study introduces erodible in-situ forming gel systems as potential vehicles for prolonged release of SLNs. SLNs were prepared by solidification of an oil-in-water microemulsion containing stearic acid, surfactants and co-surfactants. Nanoparticles were then dispersed in a thermosensitive Poloxamer 407 aqueous solution (sol) at 4 °C and their effects on gel forming ability, sol-gel transition and rheological behavior of the system were investigated over 5-50 °C. Thermal behavior of the system was investigated by differential scanning calorimetry too. Erosion rate of the gel in the presence and absence of SLN was measured by gravimetric method. Integrity of SLNs in the system was investigated by scanning electron microscopy (SEM) and particle size analysis. SLN showed particle size and zeta potential of 130 ± 1.39 nm and - 44 ± 2.1 mV respectively. Particle size analysis and SEM studies after gel erosion revealed presence of intact SLN in the hydrogel. SLN reduced erosion rate of Poloxamer gel and increased its sol-gel transition temperature from 26 to 29 °C. However, gelling kinetic did not change significantly after addition of SLN. Damping factor <1 indicated stability of the SLN-containing system. Present results indicate potential of sol-gel systems for controlled nanoparticle delivery and show that SLN affects properties of the system.
format Online
Article
Text
id pubmed-4403051
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Shaheed Beheshti University of Medical Sciences
record_format MEDLINE/PubMed
spelling pubmed-44030512015-04-21 Preparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior Dorraj, Golnar Moghimi, Hamid Reza Iran J Pharm Res Original Article Various nanoparticles have been investigated as novel drug delivery systems, including solid lipid nanoparticles (SLNs). Due to their rapid clearance from systemic circulation, nanoparticles do not provide sustained action in most cases. Different strategies have been employed to overcome this problem. In this direction, the present study introduces erodible in-situ forming gel systems as potential vehicles for prolonged release of SLNs. SLNs were prepared by solidification of an oil-in-water microemulsion containing stearic acid, surfactants and co-surfactants. Nanoparticles were then dispersed in a thermosensitive Poloxamer 407 aqueous solution (sol) at 4 °C and their effects on gel forming ability, sol-gel transition and rheological behavior of the system were investigated over 5-50 °C. Thermal behavior of the system was investigated by differential scanning calorimetry too. Erosion rate of the gel in the presence and absence of SLN was measured by gravimetric method. Integrity of SLNs in the system was investigated by scanning electron microscopy (SEM) and particle size analysis. SLN showed particle size and zeta potential of 130 ± 1.39 nm and - 44 ± 2.1 mV respectively. Particle size analysis and SEM studies after gel erosion revealed presence of intact SLN in the hydrogel. SLN reduced erosion rate of Poloxamer gel and increased its sol-gel transition temperature from 26 to 29 °C. However, gelling kinetic did not change significantly after addition of SLN. Damping factor <1 indicated stability of the SLN-containing system. Present results indicate potential of sol-gel systems for controlled nanoparticle delivery and show that SLN affects properties of the system. Shaheed Beheshti University of Medical Sciences 2015 /pmc/articles/PMC4403051/ /pubmed/25901142 Text en © 2015 by School of Pharmacy, Shaheed Beheshti University of Medical Sciences and Health Services This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Dorraj, Golnar
Moghimi, Hamid Reza
Preparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
title Preparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
title_full Preparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
title_fullStr Preparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
title_full_unstemmed Preparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
title_short Preparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
title_sort preparation of sln-containing thermoresponsive in-situ forming gel as a controlled nanoparticle delivery system and investigating its rheological, thermal and erosion behavior
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403051/
https://www.ncbi.nlm.nih.gov/pubmed/25901142
work_keys_str_mv AT dorrajgolnar preparationofslncontainingthermoresponsiveinsituforminggelasacontrollednanoparticledeliverysystemandinvestigatingitsrheologicalthermalanderosionbehavior
AT moghimihamidreza preparationofslncontainingthermoresponsiveinsituforminggelasacontrollednanoparticledeliverysystemandinvestigatingitsrheologicalthermalanderosionbehavior