Cargando…
Asymmetric author-topic model for knowledge discovering of big data in toxicogenomics
The advancement of high-throughput screening technologies facilitates the generation of massive amount of biological data, a big data phenomena in biomedical science. Yet, researchers still heavily rely on keyword search and/or literature review to navigate the databases and analyses are often done...
Autores principales: | Chung, Ming-Hua, Wang, Yuping, Tang, Hailin, Zou, Wen, Basinger, John, Xu, Xiaowei, Tong, Weida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403303/ https://www.ncbi.nlm.nih.gov/pubmed/25941488 http://dx.doi.org/10.3389/fphar.2015.00081 |
Ejemplares similares
-
Application of dynamic topic models to toxicogenomics data
por: Lee, Mikyung, et al.
Publicado: (2016) -
Of text and gene – using text mining methods to uncover hidden knowledge in toxicogenomics
por: Lee, Mikyung, et al.
Publicado: (2014) -
Evaluation of Bioinformatics Approaches for Next-Generation Sequencing Analysis of microRNAs with a Toxicogenomics Study Design
por: Bisgin, Halil, et al.
Publicado: (2018) -
Editorial: Integrative Toxicogenomics: Analytical Strategies to Amalgamate Exposure Effects With Genomic Sciences
por: Bushel, Pierre R., et al.
Publicado: (2018) -
Proceedings of the First International Conference on Toxicogenomics Integrated with Environmental Sciences (TIES-2007)
por: Bushel, Pierre R, et al.
Publicado: (2009)