Cargando…
Parameter estimation of neuron models using in-vitro and in-vivo electrophysiological data
Spiking neuron models can accurately predict the response of neurons to somatically injected currents if the model parameters are carefully tuned. Predicting the response of in-vivo neurons responding to natural stimuli presents a far more challenging modeling problem. In this study, an algorithm is...
Autores principales: | Lynch, Eoin P., Houghton, Conor J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403314/ https://www.ncbi.nlm.nih.gov/pubmed/25941485 http://dx.doi.org/10.3389/fninf.2015.00010 |
Ejemplares similares
-
Modelling cerebellar Purkinje cells with simple neuron models of the threshold type
por: Lynch, Eoin P, et al.
Publicado: (2013) -
Neurofitter: A Parameter Tuning Package for a Wide Range of Electrophysiological Neuron Models
por: Van Geit, Werner, et al.
Publicado: (2007) -
NeuroElectro: a window to the world's neuron electrophysiology data
por: Tripathy, Shreejoy J., et al.
Publicado: (2014) -
Automatic Fitting of Spiking Neuron Models to Electrophysiological Recordings
por: Rossant, Cyrille, et al.
Publicado: (2010) -
In Vivo Electrophysiological Measurement of Compound Muscle Action Potential from the Forelimbs in Mouse Models of Motor Neuron Degeneration
por: Pollari, Eveliina, et al.
Publicado: (2018)