Cargando…

Blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an Antarctic octopod

INTRODUCTION: The Antarctic Ocean hosts a rich and diverse fauna despite inhospitable temperatures close to freezing, which require specialist adaptations to sustain animal activity and various underlying body functions. While oxygen transport has been suggested to be key in setting thermal toleranc...

Descripción completa

Detalles Bibliográficos
Autores principales: Oellermann, Michael, Lieb, Bernhard, Pörtner, Hans-O, Semmens, Jayson M, Mark, Felix C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403823/
https://www.ncbi.nlm.nih.gov/pubmed/25897316
http://dx.doi.org/10.1186/s12983-015-0097-x
_version_ 1782367388355788800
author Oellermann, Michael
Lieb, Bernhard
Pörtner, Hans-O
Semmens, Jayson M
Mark, Felix C
author_facet Oellermann, Michael
Lieb, Bernhard
Pörtner, Hans-O
Semmens, Jayson M
Mark, Felix C
author_sort Oellermann, Michael
collection PubMed
description INTRODUCTION: The Antarctic Ocean hosts a rich and diverse fauna despite inhospitable temperatures close to freezing, which require specialist adaptations to sustain animal activity and various underlying body functions. While oxygen transport has been suggested to be key in setting thermal tolerance in warmer climates, this constraint is relaxed in Antarctic fishes and crustaceans, due to high levels of dissolved oxygen. Less is known about how other Antarctic ectotherms cope with temperatures near zero, particularly the more active invertebrates like the abundant octopods. A continued reliance on the highly specialised blood oxygen transport system of cephalopods may concur with functional constraints at cold temperatures. We therefore analysed the octopod’s central oxygen transport component, the blue blood pigment haemocyanin, to unravel strategies that sustain oxygen supply at cold temperatures. RESULTS: To identify adaptive compensation of blood oxygen transport in octopods from different climatic regions, we compared haemocyanin oxygen binding properties, oxygen carrying capacities as well as haemolymph protein and ion composition between the Antarctic octopod Pareledone charcoti, the South-east Australian Octopus pallidus and the Mediterranean Eledone moschata. In the Antarctic Pareledone charcoti at 0°C, oxygen unloading by haemocyanin was poor but supported by high levels of dissolved oxygen. However, lower oxygen affinity and higher oxygen carrying capacity compared to warm water octopods, still enabled significant contribution of haemocyanin to oxygen transport at 0°C. At warmer temperatures, haemocyanin of Pareledone charcoti releases most of the bound oxygen, supporting oxygen supply at 10°C. In warm water octopods, increasing oxygen affinities reduce the ability to release oxygen from haemocyanin at colder temperatures. Though, unlike Eledone moschata, Octopus pallidus attenuated this increase below 15°C. CONCLUSIONS: Adjustments of haemocyanin physiological function and haemocyanin concentrations but also high dissolved oxygen concentrations support oxygen supply in the Antarctic octopus Pareledone charcoti at near freezing temperatures. Increased oxygen supply by haemocyanin at warmer temperatures supports extended warm tolerance and thus eurythermy of Pareledone charcoti. Limited haemocyanin function towards colder temperatures in Antarctic and warm water octopods highlights the general role of haemocyanin oxygen transport in constraining cold tolerance in octopods. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12983-015-0097-x) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4403823
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-44038232015-04-21 Blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an Antarctic octopod Oellermann, Michael Lieb, Bernhard Pörtner, Hans-O Semmens, Jayson M Mark, Felix C Front Zool Research INTRODUCTION: The Antarctic Ocean hosts a rich and diverse fauna despite inhospitable temperatures close to freezing, which require specialist adaptations to sustain animal activity and various underlying body functions. While oxygen transport has been suggested to be key in setting thermal tolerance in warmer climates, this constraint is relaxed in Antarctic fishes and crustaceans, due to high levels of dissolved oxygen. Less is known about how other Antarctic ectotherms cope with temperatures near zero, particularly the more active invertebrates like the abundant octopods. A continued reliance on the highly specialised blood oxygen transport system of cephalopods may concur with functional constraints at cold temperatures. We therefore analysed the octopod’s central oxygen transport component, the blue blood pigment haemocyanin, to unravel strategies that sustain oxygen supply at cold temperatures. RESULTS: To identify adaptive compensation of blood oxygen transport in octopods from different climatic regions, we compared haemocyanin oxygen binding properties, oxygen carrying capacities as well as haemolymph protein and ion composition between the Antarctic octopod Pareledone charcoti, the South-east Australian Octopus pallidus and the Mediterranean Eledone moschata. In the Antarctic Pareledone charcoti at 0°C, oxygen unloading by haemocyanin was poor but supported by high levels of dissolved oxygen. However, lower oxygen affinity and higher oxygen carrying capacity compared to warm water octopods, still enabled significant contribution of haemocyanin to oxygen transport at 0°C. At warmer temperatures, haemocyanin of Pareledone charcoti releases most of the bound oxygen, supporting oxygen supply at 10°C. In warm water octopods, increasing oxygen affinities reduce the ability to release oxygen from haemocyanin at colder temperatures. Though, unlike Eledone moschata, Octopus pallidus attenuated this increase below 15°C. CONCLUSIONS: Adjustments of haemocyanin physiological function and haemocyanin concentrations but also high dissolved oxygen concentrations support oxygen supply in the Antarctic octopus Pareledone charcoti at near freezing temperatures. Increased oxygen supply by haemocyanin at warmer temperatures supports extended warm tolerance and thus eurythermy of Pareledone charcoti. Limited haemocyanin function towards colder temperatures in Antarctic and warm water octopods highlights the general role of haemocyanin oxygen transport in constraining cold tolerance in octopods. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12983-015-0097-x) contains supplementary material, which is available to authorized users. BioMed Central 2015-03-11 /pmc/articles/PMC4403823/ /pubmed/25897316 http://dx.doi.org/10.1186/s12983-015-0097-x Text en © Oellermann et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Oellermann, Michael
Lieb, Bernhard
Pörtner, Hans-O
Semmens, Jayson M
Mark, Felix C
Blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an Antarctic octopod
title Blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an Antarctic octopod
title_full Blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an Antarctic octopod
title_fullStr Blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an Antarctic octopod
title_full_unstemmed Blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an Antarctic octopod
title_short Blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an Antarctic octopod
title_sort blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an antarctic octopod
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403823/
https://www.ncbi.nlm.nih.gov/pubmed/25897316
http://dx.doi.org/10.1186/s12983-015-0097-x
work_keys_str_mv AT oellermannmichael bluebloodonicemodulatedbloodoxygentransportfacilitatescoldcompensationandeurythermyinanantarcticoctopod
AT liebbernhard bluebloodonicemodulatedbloodoxygentransportfacilitatescoldcompensationandeurythermyinanantarcticoctopod
AT portnerhanso bluebloodonicemodulatedbloodoxygentransportfacilitatescoldcompensationandeurythermyinanantarcticoctopod
AT semmensjaysonm bluebloodonicemodulatedbloodoxygentransportfacilitatescoldcompensationandeurythermyinanantarcticoctopod
AT markfelixc bluebloodonicemodulatedbloodoxygentransportfacilitatescoldcompensationandeurythermyinanantarcticoctopod