Cargando…

The Epstein-Barr virus latent membrane protein-1 (LMP1) 30-bp deletion and XhoI-polymorphism in nasopharyngeal carcinoma: a meta-analysis of observational studies

BACKGROUND: Epstein-Barr virus (EBV) is considered to be closely associated with nasopharyngeal carcinoma (NPC), in which EBV-encoded latent membrane protein 1 (LMP1) was found to have an oncogenic role. However, the results published on the LMP1 polymorphism are inconsistent. In the present study,...

Descripción completa

Detalles Bibliográficos
Autores principales: da Costa, Vivaldo G, Marques-Silva, Ariany C, Moreli, Marcos L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404015/
https://www.ncbi.nlm.nih.gov/pubmed/25927427
http://dx.doi.org/10.1186/s13643-015-0037-z
Descripción
Sumario:BACKGROUND: Epstein-Barr virus (EBV) is considered to be closely associated with nasopharyngeal carcinoma (NPC), in which EBV-encoded latent membrane protein 1 (LMP1) was found to have an oncogenic role. However, the results published on the LMP1 polymorphism are inconsistent. In the present study, we performed a meta-analysis to determine the frequency of the associations and a more precise association between NPC and EBV LMP1 gene variants (30-bp deletion (del)/XhoI-loss). METHODS: Eligible articles met the inclusion/exclusion criteria and were identified in the following electronic databases: PubMed, ScienceDirect, and SciELO. Consequently, the data of interest were extracted and plotted in a table to calculate the frequency and odds ratio (OR) of the outcomes of interest (30-bp del-LMP1/XhoI-loss) in patients with NPC. Study quality (Newcastle-Ottawa Scale (NOS)), publication bias, and heterogeneity were assessed. RESULTS: Thirty-one observational studies were included with a total of 2,846 individuals (NPC, n = 1,855; control, n = 991). The risk of bias in relation to study quality evaluated by NOS was considered low. The pooled estimate of the frequency of 30-bp del-LMP1 and XhoI-loss in patients with NPC was 77% (95% confidence interval (CI): 72 to 82) and 82% (95% CI: 71 to 92), respectively. There was an association between 30-bp del-LMP1 and NPC susceptibility (OR = 2.86, 95% CI: 1.35 to 6.07, P = 0.00). Similarly, there was an association between XhoI-loss and NPC (OR = 8.5, 95% CI: 1.7 to 41, P = 0.00). However, when we analyze the co-existence of the 30-bp del-LMP1 and XhoI-loss in patients with NPC, there was no association (OR = 1.09, 95% CI: 0.06 to 18.79, P = 0.002). CONCLUSIONS: Our results suggest an association between the 30-bp del-LMP1 and XhoI-loss with NPC susceptibility. However, our data should be interpreted with caution because the sample size was small, and there was heterogeneity between the studies. Thus, future studies are needed with adjusted estimates to simultaneously evaluate multiple factors involved in the development of NPC. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42014013496. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13643-015-0037-z) contains supplementary material, which is available to authorized users.