Cargando…
Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis
Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the mor...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404055/ https://www.ncbi.nlm.nih.gov/pubmed/25893249 http://dx.doi.org/10.1371/journal.pone.0124709 |
_version_ | 1782367435015323648 |
---|---|
author | Raggi, Lorenzo Bitocchi, Elena Russi, Luigi Marconi, Gianpiero Sharbel, Timothy F. Veronesi, Fabio Albertini, Emidio |
author_facet | Raggi, Lorenzo Bitocchi, Elena Russi, Luigi Marconi, Gianpiero Sharbel, Timothy F. Veronesi, Fabio Albertini, Emidio |
author_sort | Raggi, Lorenzo |
collection | PubMed |
description | Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. |
format | Online Article Text |
id | pubmed-4404055 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44040552015-05-02 Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis Raggi, Lorenzo Bitocchi, Elena Russi, Luigi Marconi, Gianpiero Sharbel, Timothy F. Veronesi, Fabio Albertini, Emidio PLoS One Research Article Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. Public Library of Science 2015-04-20 /pmc/articles/PMC4404055/ /pubmed/25893249 http://dx.doi.org/10.1371/journal.pone.0124709 Text en © 2015 Raggi et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Raggi, Lorenzo Bitocchi, Elena Russi, Luigi Marconi, Gianpiero Sharbel, Timothy F. Veronesi, Fabio Albertini, Emidio Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis |
title | Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis |
title_full | Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis |
title_fullStr | Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis |
title_full_unstemmed | Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis |
title_short | Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis |
title_sort | understanding genetic diversity and population structure of a poa pratensis worldwide collection through morphological, nuclear and chloroplast diversity analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404055/ https://www.ncbi.nlm.nih.gov/pubmed/25893249 http://dx.doi.org/10.1371/journal.pone.0124709 |
work_keys_str_mv | AT raggilorenzo understandinggeneticdiversityandpopulationstructureofapoapratensisworldwidecollectionthroughmorphologicalnuclearandchloroplastdiversityanalysis AT bitocchielena understandinggeneticdiversityandpopulationstructureofapoapratensisworldwidecollectionthroughmorphologicalnuclearandchloroplastdiversityanalysis AT russiluigi understandinggeneticdiversityandpopulationstructureofapoapratensisworldwidecollectionthroughmorphologicalnuclearandchloroplastdiversityanalysis AT marconigianpiero understandinggeneticdiversityandpopulationstructureofapoapratensisworldwidecollectionthroughmorphologicalnuclearandchloroplastdiversityanalysis AT sharbeltimothyf understandinggeneticdiversityandpopulationstructureofapoapratensisworldwidecollectionthroughmorphologicalnuclearandchloroplastdiversityanalysis AT veronesifabio understandinggeneticdiversityandpopulationstructureofapoapratensisworldwidecollectionthroughmorphologicalnuclearandchloroplastdiversityanalysis AT albertiniemidio understandinggeneticdiversityandpopulationstructureofapoapratensisworldwidecollectionthroughmorphologicalnuclearandchloroplastdiversityanalysis |