Cargando…

Phylogeographical Structure in Mitochondrial DNA of Legume Pod Borer (Maruca vitrata) Population in Tropical Asia and Sub-Saharan Africa

This study was undertaken to assess the genetic diversity and host plant races of M. vitrata population in South and Southeast Asia and sub-Saharan Africa. The cytochrome c oxidase subunit 1 (cox1) gene was used to understand the phylogenetic relationship of geographically different M. vitrata popul...

Descripción completa

Detalles Bibliográficos
Autores principales: Periasamy, Malini, Schafleitner, Roland, Muthukalingan, Krishnan, Ramasamy, Srinivasan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404340/
https://www.ncbi.nlm.nih.gov/pubmed/25893977
http://dx.doi.org/10.1371/journal.pone.0124057
Descripción
Sumario:This study was undertaken to assess the genetic diversity and host plant races of M. vitrata population in South and Southeast Asia and sub-Saharan Africa. The cytochrome c oxidase subunit 1 (cox1) gene was used to understand the phylogenetic relationship of geographically different M. vitrata population, but previous studies did not include population from Southeast Asia, the probable center of origin for Maruca, and from east Africa. Extensive sampling was done from different host plant species in target countries. Reference populations from Oceania and Latin America were used. An amplicon of 658 bp was produced by polymerase chain reaction, and 64 haplotypes were identified in 686 M. vitrata individuals. Phylogenetic analysis showed no difference among the M. vitrata population from different host plants. However, the results suggested that M. vitrata has formed two putative subspecies (which cannot be differentiated based on morphological characters) in Asia and sub-Saharan Africa, as indicated by the high pairwise F(ST) values (0.44–0.85). The extremely high F(ST) values (≥0.93) of Maruca population in Latin America and Oceania compared to Asian and African population seem to indicate a different species. On the continental or larger geographical region basis, the genetic differentiation is significantly correlated with the geographical distance. In addition, two putative species of Maruca, including M. vitrata occur in Australia, Indonesia and Papua New Guinea. The negative Tajima’s D and Fu’s F(S) values showed the recent demographic expansion of Maruca population. The haplotype network and Automatic Barcode Gap Discovery analyses confirmed the results of phylogenetic analysis. Thus, this study confirmed the presence of three putative Maruca species, including one in Latin America, one in Oceania (including Indonesia) and M. vitrata in Asia, Africa and Oceania. Hence, the genetic differences in Maruca population should be carefully considered while designing the pest management strategies in different regions.