Cargando…
Broad application of a simple and affordable protocol for isolating plant RNA
BACKGROUND: Standard molecular biological methods involve the analysis of gene expression in living organisms under diverse environmental and developmental conditions. One of the most direct approaches to quantify gene expression is the isolation of RNA. Most techniques used to quantify gene express...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404699/ https://www.ncbi.nlm.nih.gov/pubmed/25880330 http://dx.doi.org/10.1186/s13104-015-1119-7 |
Sumario: | BACKGROUND: Standard molecular biological methods involve the analysis of gene expression in living organisms under diverse environmental and developmental conditions. One of the most direct approaches to quantify gene expression is the isolation of RNA. Most techniques used to quantify gene expression require the isolation of RNA, usually from a large number of samples. While most published protocols, including those for commercial reagents, are either labour intensive, use hazardous chemicals and/or are costly, a previously published protocol for RNA isolation in Arabidopsis thaliana yields high amounts of good quality RNA in a simple, safe and inexpensive manner. FINDINGS: We have tested this protocol in tomato and wheat leaves, as well as in Arabidopsis leaves, and compared the resulting RNA to that obtained using a commercial phenol-based reagent. Our results demonstrate that this protocol is applicable to other plant species, including monocots, and offers yield and purity at least comparable to those provided by commercial phenol-based reagents. CONCLUSIONS: Here, we show that this previously published RNA isolation protocol can be easily extended to other plant species without further modification. Due to its simplicity and the use of inexpensive reagents, this protocol is accessible and affordable and can be easily implemented to work on different plant species in laboratories worldwide. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13104-015-1119-7) contains supplementary material, which is available to authorized users. |
---|