Cargando…

Metabolic Engineering of Escherichia coli for Poly(3-hydroxybutyrate) Production under Microaerobic Condition

The alcohol dehydrogenase promoter P(adhE) and mixed acid fermentation pathway deficient mutants of Escherichia coli were employed to produce poly(3-hydroxybutyrate) (P3HB) under microaerobic condition. The E. coli mutant with ackA-pta, poxB, ldhA, and adhE deletions accumulated 0.67 g/L P3HB, up to...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Xiao-Xing, Zheng, Wei-Tao, Hou, Xue, Liang, Jian, Li, Zheng-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405016/
https://www.ncbi.nlm.nih.gov/pubmed/25945345
http://dx.doi.org/10.1155/2015/789315
Descripción
Sumario:The alcohol dehydrogenase promoter P(adhE) and mixed acid fermentation pathway deficient mutants of Escherichia coli were employed to produce poly(3-hydroxybutyrate) (P3HB) under microaerobic condition. The E. coli mutant with ackA-pta, poxB, ldhA, and adhE deletions accumulated 0.67 g/L P3HB, up to 78.84% of cell dry weight in tube cultivation. The deletion of pyruvate formate-lyase gene pflB drastically decreased P3HB production and P3HB content to 0.09 g/L and 24.44%, respectively. Overexpressing pflB via the plasmid in its knocked out mutant restored cell growth and P3HB accumulation, indicating the importance of the pyruvate formate-lyase in microaerobic carbon metabolism. The engineered E. coli BWapld (pWYC09) produced 5.00 g/L P3HB from 16.50 g/L glucose in 24 h batch fermentation, and P3HB production yield from glucose was 0.30 g/g, which reached up to 63% of maximal theoretical yield.