Cargando…
Chronic L-DOPA induces hyperactivity, normalization of gait and dyskinetic behavior in MitoPark mice
Dopamine (DA) replacement therapy continues to be the gold standard treatment for Parkinson's disease (PD), as it improves key motor symptoms including bradykinesia and gait disturbances. With time, treatment induces side effects in the majority of patients, known as L-DOPA-induced dyskinesia (...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405092/ https://www.ncbi.nlm.nih.gov/pubmed/25752644 http://dx.doi.org/10.1111/gbb.12210 |
_version_ | 1782367600206938112 |
---|---|
author | Gellhaar, S Marcellino, D Abrams, M B Galter, D |
author_facet | Gellhaar, S Marcellino, D Abrams, M B Galter, D |
author_sort | Gellhaar, S |
collection | PubMed |
description | Dopamine (DA) replacement therapy continues to be the gold standard treatment for Parkinson's disease (PD), as it improves key motor symptoms including bradykinesia and gait disturbances. With time, treatment induces side effects in the majority of patients, known as L-DOPA-induced dyskinesia (LID), which are often studied in animals by the use of unilateral, toxin-induced rodent models. In this study, we used the progressive, genetic PD model MitoPark to specifically evaluate bilateral changes in motor behavior following long-term L-DOPA treatment at three different stages of striatal DA depletion. Besides locomotor activity, we assessed changes in gait with two automated gait analysis systems and the development of dyskinetic behavior. Long-term treatment with a moderate, clinically relevant dose of L-DOPA (8 mg/kg) gradually produced age-dependent hyperactivity in MitoPark mice. In voluntary and forced gait analyses, we show that MitoPark mice with severe DA depletion have distinct gait characteristics, which are normalized to control levels following long-term L-DOPA treatment. The cylinder test showed an age-dependent and gradual development of bilateral LID. Significant increase in striatal FosB and prodynorphin expression was found to accompany the behavior changes. Taken together, we report that MitoPark mice model both behavioral and biochemical characteristics of long-term L-DOPA treatment in PD patients and provide a novel, consistent and progressive animal model of dyskinesia to aid in the discovery and evaluation of better treatment options to counteract LID. |
format | Online Article Text |
id | pubmed-4405092 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-44050922015-04-22 Chronic L-DOPA induces hyperactivity, normalization of gait and dyskinetic behavior in MitoPark mice Gellhaar, S Marcellino, D Abrams, M B Galter, D Genes Brain Behav Original Articles Dopamine (DA) replacement therapy continues to be the gold standard treatment for Parkinson's disease (PD), as it improves key motor symptoms including bradykinesia and gait disturbances. With time, treatment induces side effects in the majority of patients, known as L-DOPA-induced dyskinesia (LID), which are often studied in animals by the use of unilateral, toxin-induced rodent models. In this study, we used the progressive, genetic PD model MitoPark to specifically evaluate bilateral changes in motor behavior following long-term L-DOPA treatment at three different stages of striatal DA depletion. Besides locomotor activity, we assessed changes in gait with two automated gait analysis systems and the development of dyskinetic behavior. Long-term treatment with a moderate, clinically relevant dose of L-DOPA (8 mg/kg) gradually produced age-dependent hyperactivity in MitoPark mice. In voluntary and forced gait analyses, we show that MitoPark mice with severe DA depletion have distinct gait characteristics, which are normalized to control levels following long-term L-DOPA treatment. The cylinder test showed an age-dependent and gradual development of bilateral LID. Significant increase in striatal FosB and prodynorphin expression was found to accompany the behavior changes. Taken together, we report that MitoPark mice model both behavioral and biochemical characteristics of long-term L-DOPA treatment in PD patients and provide a novel, consistent and progressive animal model of dyskinesia to aid in the discovery and evaluation of better treatment options to counteract LID. Blackwell Publishing Ltd 2015-03 2015-03-27 /pmc/articles/PMC4405092/ /pubmed/25752644 http://dx.doi.org/10.1111/gbb.12210 Text en © 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Gellhaar, S Marcellino, D Abrams, M B Galter, D Chronic L-DOPA induces hyperactivity, normalization of gait and dyskinetic behavior in MitoPark mice |
title | Chronic L-DOPA induces hyperactivity, normalization of gait and dyskinetic behavior in MitoPark mice |
title_full | Chronic L-DOPA induces hyperactivity, normalization of gait and dyskinetic behavior in MitoPark mice |
title_fullStr | Chronic L-DOPA induces hyperactivity, normalization of gait and dyskinetic behavior in MitoPark mice |
title_full_unstemmed | Chronic L-DOPA induces hyperactivity, normalization of gait and dyskinetic behavior in MitoPark mice |
title_short | Chronic L-DOPA induces hyperactivity, normalization of gait and dyskinetic behavior in MitoPark mice |
title_sort | chronic l-dopa induces hyperactivity, normalization of gait and dyskinetic behavior in mitopark mice |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405092/ https://www.ncbi.nlm.nih.gov/pubmed/25752644 http://dx.doi.org/10.1111/gbb.12210 |
work_keys_str_mv | AT gellhaars chronicldopainduceshyperactivitynormalizationofgaitanddyskineticbehaviorinmitoparkmice AT marcellinod chronicldopainduceshyperactivitynormalizationofgaitanddyskineticbehaviorinmitoparkmice AT abramsmb chronicldopainduceshyperactivitynormalizationofgaitanddyskineticbehaviorinmitoparkmice AT galterd chronicldopainduceshyperactivitynormalizationofgaitanddyskineticbehaviorinmitoparkmice |