Cargando…

Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study

Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear st...

Descripción completa

Detalles Bibliográficos
Autores principales: Chivukula, Venkat Keshav, Krog, Benjamin L, Nauseef, Jones T, Henry, Michael D, Vigmostad, Sarah C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405123/
https://www.ncbi.nlm.nih.gov/pubmed/25908902
http://dx.doi.org/10.2147/CHC.S71852
_version_ 1782367601629855744
author Chivukula, Venkat Keshav
Krog, Benjamin L
Nauseef, Jones T
Henry, Michael D
Vigmostad, Sarah C
author_facet Chivukula, Venkat Keshav
Krog, Benjamin L
Nauseef, Jones T
Henry, Michael D
Vigmostad, Sarah C
author_sort Chivukula, Venkat Keshav
collection PubMed
description Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS) on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH) and transformed prostate cancer cells (PC-3) were used in this study. The Young’s modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared) and immediately after exposure to high (6,400 dyn/cm(2)) and low (510 dyn/cm(2)) FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young’s modulus after exposure to high FSS and a ~47% increase in Young’s modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young’s modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young’s modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study investigating the effect of FSS on the mechanical properties of cancer cells in suspension, and may provide significant insights into the mechanism by which some select cancer cells may survive in the circulation, ultimately leading to metastasis at distal sites. Our findings suggest that biomechanical analysis of cancer cells could aid in identifying and diagnosing cancer in the future.
format Online
Article
Text
id pubmed-4405123
institution National Center for Biotechnology Information
language English
publishDate 2015
record_format MEDLINE/PubMed
spelling pubmed-44051232015-04-21 Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study Chivukula, Venkat Keshav Krog, Benjamin L Nauseef, Jones T Henry, Michael D Vigmostad, Sarah C Cell Health Cytoskelet Article Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS) on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH) and transformed prostate cancer cells (PC-3) were used in this study. The Young’s modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared) and immediately after exposure to high (6,400 dyn/cm(2)) and low (510 dyn/cm(2)) FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young’s modulus after exposure to high FSS and a ~47% increase in Young’s modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young’s modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young’s modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study investigating the effect of FSS on the mechanical properties of cancer cells in suspension, and may provide significant insights into the mechanism by which some select cancer cells may survive in the circulation, ultimately leading to metastasis at distal sites. Our findings suggest that biomechanical analysis of cancer cells could aid in identifying and diagnosing cancer in the future. 2015-01-09 /pmc/articles/PMC4405123/ /pubmed/25908902 http://dx.doi.org/10.2147/CHC.S71852 Text en © 2015 Chivukula et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php
spellingShingle Article
Chivukula, Venkat Keshav
Krog, Benjamin L
Nauseef, Jones T
Henry, Michael D
Vigmostad, Sarah C
Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study
title Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study
title_full Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study
title_fullStr Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study
title_full_unstemmed Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study
title_short Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study
title_sort alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405123/
https://www.ncbi.nlm.nih.gov/pubmed/25908902
http://dx.doi.org/10.2147/CHC.S71852
work_keys_str_mv AT chivukulavenkatkeshav alterationsincancercellmechanicalpropertiesafterfluidshearstressexposureamicropipetteaspirationstudy
AT krogbenjaminl alterationsincancercellmechanicalpropertiesafterfluidshearstressexposureamicropipetteaspirationstudy
AT nauseefjonest alterationsincancercellmechanicalpropertiesafterfluidshearstressexposureamicropipetteaspirationstudy
AT henrymichaeld alterationsincancercellmechanicalpropertiesafterfluidshearstressexposureamicropipetteaspirationstudy
AT vigmostadsarahc alterationsincancercellmechanicalpropertiesafterfluidshearstressexposureamicropipetteaspirationstudy