Cargando…
Human and Machine Learning in Non-Markovian Decision Making
Humans can learn under a wide variety of feedback conditions. Reinforcement learning (RL), where a series of rewarded decisions must be made, is a particularly important type of learning. Computational and behavioral studies of RL have focused mainly on Markovian decision processes, where the next s...
Autores principales: | Clarke, Aaron Michael, Friedrich, Johannes, Tartaglia, Elisa M., Marchesotti, Silvia, Senn, Walter, Herzog, Michael H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405578/ https://www.ncbi.nlm.nih.gov/pubmed/25898139 http://dx.doi.org/10.1371/journal.pone.0123105 |
Ejemplares similares
-
What to Choose Next? A Paradigm for Testing Human Sequential Decision Making
por: Tartaglia, Elisa M., et al.
Publicado: (2017) -
Spike-based Decision Learning of Nash Equilibria in Two-Player Games
por: Friedrich, Johannes, et al.
Publicado: (2012) -
Enhanced non-Markovian behavior in quantum walks with Markovian disorder
por: Kumar, N. Pradeep, et al.
Publicado: (2018) -
Non-Markovian Monte Carlo Algorithm for the Constrained Markovian Evolution in QCD
por: Jadach, S., et al.
Publicado: (2005) -
Markovian and Non-Markovian Protein Sequence Evolution: Aggregated Markov Process Models
por: Kosiol, Carolin, et al.
Publicado: (2011)