Cargando…
Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment
This research presents the results of the GIS-based statistical models for generation of landslide susceptibility mapping using geographic information system (GIS) and remote-sensing data for Cameron Highlands area in Malaysia. Ten factors including slope, aspect, soil, lithology, NDVI, land cover,...
Autores principales: | Shahabi, Himan, Hashim, Mazlan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405769/ https://www.ncbi.nlm.nih.gov/pubmed/25898919 http://dx.doi.org/10.1038/srep09899 |
Ejemplares similares
-
Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping
por: Shirzadi, Ataollah, et al.
Publicado: (2018) -
Improving GIS-Based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing and Machine Learning
por: Lai, Jhe-Syuan, et al.
Publicado: (2019) -
Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan
por: Dou, Jie, et al.
Publicado: (2015) -
Hybrid Integration Approach of Entropy with Logistic Regression and Support Vector Machine for Landslide Susceptibility Modeling
por: Zhang, Tingyu, et al.
Publicado: (2018)