Cargando…
From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data
RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406561/ https://www.ncbi.nlm.nih.gov/pubmed/25902288 http://dx.doi.org/10.1371/journal.pone.0125000 |
_version_ | 1782367787057938432 |
---|---|
author | Li, Jilong Hou, Jie Sun, Lin Wilkins, Jordan Maximillian Lu, Yuan Niederhuth, Chad E. Merideth, Benjamin Ryan Mawhinney, Thomas P. Mossine, Valeri V. Greenlief, C. Michael Walker, John C. Folk, William R. Hannink, Mark Lubahn, Dennis B. Birchler, James A. Cheng, Jianlin |
author_facet | Li, Jilong Hou, Jie Sun, Lin Wilkins, Jordan Maximillian Lu, Yuan Niederhuth, Chad E. Merideth, Benjamin Ryan Mawhinney, Thomas P. Mossine, Valeri V. Greenlief, C. Michael Walker, John C. Folk, William R. Hannink, Mark Lubahn, Dennis B. Birchler, James A. Cheng, Jianlin |
author_sort | Li, Jilong |
collection | PubMed |
description | RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge are needed. RNAMiner—a multi-level bioinformatics protocol and pipeline—has been developed for such datasets. It includes five steps: Mapping RNA-Seq reads to a reference genome, calculating gene expression values, identifying differentially expressed genes, predicting gene functions, and constructing gene regulatory networks. To demonstrate its utility, we applied RNAMiner to datasets generated from Human, Mouse, Arabidopsis thaliana, and Drosophila melanogaster cells, and successfully identified differentially expressed genes, clustered them into cohesive functional groups, and constructed novel gene regulatory networks. The RNAMiner web service is available at http://calla.rnet.missouri.edu/rnaminer/index.html. |
format | Online Article Text |
id | pubmed-4406561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44065612015-05-07 From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data Li, Jilong Hou, Jie Sun, Lin Wilkins, Jordan Maximillian Lu, Yuan Niederhuth, Chad E. Merideth, Benjamin Ryan Mawhinney, Thomas P. Mossine, Valeri V. Greenlief, C. Michael Walker, John C. Folk, William R. Hannink, Mark Lubahn, Dennis B. Birchler, James A. Cheng, Jianlin PLoS One Research Article RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge are needed. RNAMiner—a multi-level bioinformatics protocol and pipeline—has been developed for such datasets. It includes five steps: Mapping RNA-Seq reads to a reference genome, calculating gene expression values, identifying differentially expressed genes, predicting gene functions, and constructing gene regulatory networks. To demonstrate its utility, we applied RNAMiner to datasets generated from Human, Mouse, Arabidopsis thaliana, and Drosophila melanogaster cells, and successfully identified differentially expressed genes, clustered them into cohesive functional groups, and constructed novel gene regulatory networks. The RNAMiner web service is available at http://calla.rnet.missouri.edu/rnaminer/index.html. Public Library of Science 2015-04-22 /pmc/articles/PMC4406561/ /pubmed/25902288 http://dx.doi.org/10.1371/journal.pone.0125000 Text en © 2015 Li et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Li, Jilong Hou, Jie Sun, Lin Wilkins, Jordan Maximillian Lu, Yuan Niederhuth, Chad E. Merideth, Benjamin Ryan Mawhinney, Thomas P. Mossine, Valeri V. Greenlief, C. Michael Walker, John C. Folk, William R. Hannink, Mark Lubahn, Dennis B. Birchler, James A. Cheng, Jianlin From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data |
title | From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data |
title_full | From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data |
title_fullStr | From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data |
title_full_unstemmed | From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data |
title_short | From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data |
title_sort | from gigabyte to kilobyte: a bioinformatics protocol for mining large rna-seq transcriptomics data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406561/ https://www.ncbi.nlm.nih.gov/pubmed/25902288 http://dx.doi.org/10.1371/journal.pone.0125000 |
work_keys_str_mv | AT lijilong fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT houjie fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT sunlin fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT wilkinsjordanmaximillian fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT luyuan fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT niederhuthchade fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT meridethbenjaminryan fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT mawhinneythomasp fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT mossinevaleriv fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT greenliefcmichael fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT walkerjohnc fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT folkwilliamr fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT hanninkmark fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT lubahndennisb fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT birchlerjamesa fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata AT chengjianlin fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata |