Cargando…

From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data

RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jilong, Hou, Jie, Sun, Lin, Wilkins, Jordan Maximillian, Lu, Yuan, Niederhuth, Chad E., Merideth, Benjamin Ryan, Mawhinney, Thomas P., Mossine, Valeri V., Greenlief, C. Michael, Walker, John C., Folk, William R., Hannink, Mark, Lubahn, Dennis B., Birchler, James A., Cheng, Jianlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406561/
https://www.ncbi.nlm.nih.gov/pubmed/25902288
http://dx.doi.org/10.1371/journal.pone.0125000
_version_ 1782367787057938432
author Li, Jilong
Hou, Jie
Sun, Lin
Wilkins, Jordan Maximillian
Lu, Yuan
Niederhuth, Chad E.
Merideth, Benjamin Ryan
Mawhinney, Thomas P.
Mossine, Valeri V.
Greenlief, C. Michael
Walker, John C.
Folk, William R.
Hannink, Mark
Lubahn, Dennis B.
Birchler, James A.
Cheng, Jianlin
author_facet Li, Jilong
Hou, Jie
Sun, Lin
Wilkins, Jordan Maximillian
Lu, Yuan
Niederhuth, Chad E.
Merideth, Benjamin Ryan
Mawhinney, Thomas P.
Mossine, Valeri V.
Greenlief, C. Michael
Walker, John C.
Folk, William R.
Hannink, Mark
Lubahn, Dennis B.
Birchler, James A.
Cheng, Jianlin
author_sort Li, Jilong
collection PubMed
description RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge are needed. RNAMiner—a multi-level bioinformatics protocol and pipeline—has been developed for such datasets. It includes five steps: Mapping RNA-Seq reads to a reference genome, calculating gene expression values, identifying differentially expressed genes, predicting gene functions, and constructing gene regulatory networks. To demonstrate its utility, we applied RNAMiner to datasets generated from Human, Mouse, Arabidopsis thaliana, and Drosophila melanogaster cells, and successfully identified differentially expressed genes, clustered them into cohesive functional groups, and constructed novel gene regulatory networks. The RNAMiner web service is available at http://calla.rnet.missouri.edu/rnaminer/index.html.
format Online
Article
Text
id pubmed-4406561
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-44065612015-05-07 From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data Li, Jilong Hou, Jie Sun, Lin Wilkins, Jordan Maximillian Lu, Yuan Niederhuth, Chad E. Merideth, Benjamin Ryan Mawhinney, Thomas P. Mossine, Valeri V. Greenlief, C. Michael Walker, John C. Folk, William R. Hannink, Mark Lubahn, Dennis B. Birchler, James A. Cheng, Jianlin PLoS One Research Article RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge are needed. RNAMiner—a multi-level bioinformatics protocol and pipeline—has been developed for such datasets. It includes five steps: Mapping RNA-Seq reads to a reference genome, calculating gene expression values, identifying differentially expressed genes, predicting gene functions, and constructing gene regulatory networks. To demonstrate its utility, we applied RNAMiner to datasets generated from Human, Mouse, Arabidopsis thaliana, and Drosophila melanogaster cells, and successfully identified differentially expressed genes, clustered them into cohesive functional groups, and constructed novel gene regulatory networks. The RNAMiner web service is available at http://calla.rnet.missouri.edu/rnaminer/index.html. Public Library of Science 2015-04-22 /pmc/articles/PMC4406561/ /pubmed/25902288 http://dx.doi.org/10.1371/journal.pone.0125000 Text en © 2015 Li et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Li, Jilong
Hou, Jie
Sun, Lin
Wilkins, Jordan Maximillian
Lu, Yuan
Niederhuth, Chad E.
Merideth, Benjamin Ryan
Mawhinney, Thomas P.
Mossine, Valeri V.
Greenlief, C. Michael
Walker, John C.
Folk, William R.
Hannink, Mark
Lubahn, Dennis B.
Birchler, James A.
Cheng, Jianlin
From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data
title From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data
title_full From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data
title_fullStr From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data
title_full_unstemmed From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data
title_short From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data
title_sort from gigabyte to kilobyte: a bioinformatics protocol for mining large rna-seq transcriptomics data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406561/
https://www.ncbi.nlm.nih.gov/pubmed/25902288
http://dx.doi.org/10.1371/journal.pone.0125000
work_keys_str_mv AT lijilong fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT houjie fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT sunlin fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT wilkinsjordanmaximillian fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT luyuan fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT niederhuthchade fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT meridethbenjaminryan fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT mawhinneythomasp fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT mossinevaleriv fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT greenliefcmichael fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT walkerjohnc fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT folkwilliamr fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT hanninkmark fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT lubahndennisb fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT birchlerjamesa fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT chengjianlin fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata