Cargando…
Interpolation based consensus clustering for gene expression time series
BACKGROUND: Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several clustering algorithms have been developed to analyze gene expression data. Early methods such as k-means, hierarchical clustering, and self-organiz...
Autores principales: | Chiu, Tai-Yu, Hsu, Ting-Chieh, Yen, Chia-Cheng, Wang, Jia-Shung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407314/ https://www.ncbi.nlm.nih.gov/pubmed/25888019 http://dx.doi.org/10.1186/s12859-015-0541-0 |
Ejemplares similares
-
Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications
por: Wiener, Norbert
Publicado: (1949) -
Interpolation functors and interpolation spaces
por: Brudnyi, Yu A, et al.
Publicado: (1991) -
Clustering metagenomic sequences with interpolated Markov models
por: Kelley, David R, et al.
Publicado: (2010) -
Time-variant systems and interpolation
por: Gohberg, I
Publicado: (1992) -
Spectral Preprocessing for Clustering Time-Series Gene Expressions
por: Zhao, Wentao, et al.
Publicado: (2009)