Cargando…

Heart Failure: Advanced Development in Genetics and Epigenetics

Heart failure (HF) is a complex pathophysiological syndrome that arises from a primary defect in the ability of the heart to take in and/or eject sufficient blood. Genetic mutations associated with familial dilated cardiomyopathy, hypertrophic cardiomyopathy, and arrhythmogenic right ventricular car...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Jian, Xu, Wei-wei, Hu, Shen-jiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407520/
https://www.ncbi.nlm.nih.gov/pubmed/25949994
http://dx.doi.org/10.1155/2015/352734
Descripción
Sumario:Heart failure (HF) is a complex pathophysiological syndrome that arises from a primary defect in the ability of the heart to take in and/or eject sufficient blood. Genetic mutations associated with familial dilated cardiomyopathy, hypertrophic cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy can contribute to the various pathologies of HF. Therefore, genetic screening could be an approach for guiding individualized therapies and surveillance. In addition, epigenetic regulation occurs via key mechanisms, including ATP-dependent chromatin remodeling, DNA methylation, histone modification, and RNA-based mechanisms. MicroRNA is also a hot spot in HF research. This review gives an overview of genetic mutations associated with cardiomyopathy and the roles of some epigenetic mechanisms in HF.