Cargando…

CSGM Designer: a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes

BACKGROUND: Genetic markers are tools that can facilitate molecular breeding, even in species lacking genomic resources. An important class of genetic markers is those based on orthologous genes, because they can guide hypotheses about conserved gene function, a situation that is well documented for...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jin-Hyun, Lee, Chaeyoung, Hyung, Daejin, Jo, Ye-Jin, Park, Joo-Seok, Cook, Douglas R, Choi, Hong-Kyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407554/
https://www.ncbi.nlm.nih.gov/pubmed/25908937
http://dx.doi.org/10.1186/s13007-015-0074-6
_version_ 1782367929015205888
author Kim, Jin-Hyun
Lee, Chaeyoung
Hyung, Daejin
Jo, Ye-Jin
Park, Joo-Seok
Cook, Douglas R
Choi, Hong-Kyu
author_facet Kim, Jin-Hyun
Lee, Chaeyoung
Hyung, Daejin
Jo, Ye-Jin
Park, Joo-Seok
Cook, Douglas R
Choi, Hong-Kyu
author_sort Kim, Jin-Hyun
collection PubMed
description BACKGROUND: Genetic markers are tools that can facilitate molecular breeding, even in species lacking genomic resources. An important class of genetic markers is those based on orthologous genes, because they can guide hypotheses about conserved gene function, a situation that is well documented for a number of agronomic traits. For under-studied species a key bottleneck in gene-based marker development is the need to develop molecular tools (e.g., oligonucleotide primers) that reliably access genes with orthology to the genomes of well-characterized reference species. RESULTS: Here we report an efficient platform for the design of cross-species gene-derived markers in legumes. The automated platform, named CSGM Designer (URL: http://tgil.donga.ac.kr/CSGMdesigner), facilitates rapid and systematic design of cross-species genic markers. The underlying database is composed of genome data from five legume species whose genomes are substantially characterized. Use of CSGM is enhanced by graphical displays of query results, which we describe as “circular viewer” and “search-within-results” functions. CSGM provides a virtual PCR representation (eHT-PCR) that predicts the specificity of each primer pair simultaneously in multiple genomes. CSGM Designer output was experimentally validated for the amplification of orthologous genes using 16 genotypes representing 12 crop and model legume species, distributed among the galegoid and phaseoloid clades. Successful cross-species amplification was obtained for 85.3% of PCR primer combinations. CONCLUSION: CSGM Designer spans the divide between well-characterized crop and model legume species and their less well-characterized relatives. The outcome is PCR primers that target highly conserved genes for polymorphism discovery, enabling functional inferences and ultimately facilitating trait-associated molecular breeding. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13007-015-0074-6) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4407554
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-44075542015-04-24 CSGM Designer: a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes Kim, Jin-Hyun Lee, Chaeyoung Hyung, Daejin Jo, Ye-Jin Park, Joo-Seok Cook, Douglas R Choi, Hong-Kyu Plant Methods Methodology BACKGROUND: Genetic markers are tools that can facilitate molecular breeding, even in species lacking genomic resources. An important class of genetic markers is those based on orthologous genes, because they can guide hypotheses about conserved gene function, a situation that is well documented for a number of agronomic traits. For under-studied species a key bottleneck in gene-based marker development is the need to develop molecular tools (e.g., oligonucleotide primers) that reliably access genes with orthology to the genomes of well-characterized reference species. RESULTS: Here we report an efficient platform for the design of cross-species gene-derived markers in legumes. The automated platform, named CSGM Designer (URL: http://tgil.donga.ac.kr/CSGMdesigner), facilitates rapid and systematic design of cross-species genic markers. The underlying database is composed of genome data from five legume species whose genomes are substantially characterized. Use of CSGM is enhanced by graphical displays of query results, which we describe as “circular viewer” and “search-within-results” functions. CSGM provides a virtual PCR representation (eHT-PCR) that predicts the specificity of each primer pair simultaneously in multiple genomes. CSGM Designer output was experimentally validated for the amplification of orthologous genes using 16 genotypes representing 12 crop and model legume species, distributed among the galegoid and phaseoloid clades. Successful cross-species amplification was obtained for 85.3% of PCR primer combinations. CONCLUSION: CSGM Designer spans the divide between well-characterized crop and model legume species and their less well-characterized relatives. The outcome is PCR primers that target highly conserved genes for polymorphism discovery, enabling functional inferences and ultimately facilitating trait-associated molecular breeding. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13007-015-0074-6) contains supplementary material, which is available to authorized users. BioMed Central 2015-04-18 /pmc/articles/PMC4407554/ /pubmed/25908937 http://dx.doi.org/10.1186/s13007-015-0074-6 Text en © Kim et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Methodology
Kim, Jin-Hyun
Lee, Chaeyoung
Hyung, Daejin
Jo, Ye-Jin
Park, Joo-Seok
Cook, Douglas R
Choi, Hong-Kyu
CSGM Designer: a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes
title CSGM Designer: a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes
title_full CSGM Designer: a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes
title_fullStr CSGM Designer: a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes
title_full_unstemmed CSGM Designer: a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes
title_short CSGM Designer: a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes
title_sort csgm designer: a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407554/
https://www.ncbi.nlm.nih.gov/pubmed/25908937
http://dx.doi.org/10.1186/s13007-015-0074-6
work_keys_str_mv AT kimjinhyun csgmdesigneraplatformfordesigningcrossspeciesintronspanninggenicmarkerslinkedwithgenomeinformationoflegumes
AT leechaeyoung csgmdesigneraplatformfordesigningcrossspeciesintronspanninggenicmarkerslinkedwithgenomeinformationoflegumes
AT hyungdaejin csgmdesigneraplatformfordesigningcrossspeciesintronspanninggenicmarkerslinkedwithgenomeinformationoflegumes
AT joyejin csgmdesigneraplatformfordesigningcrossspeciesintronspanninggenicmarkerslinkedwithgenomeinformationoflegumes
AT parkjooseok csgmdesigneraplatformfordesigningcrossspeciesintronspanninggenicmarkerslinkedwithgenomeinformationoflegumes
AT cookdouglasr csgmdesigneraplatformfordesigningcrossspeciesintronspanninggenicmarkerslinkedwithgenomeinformationoflegumes
AT choihongkyu csgmdesigneraplatformfordesigningcrossspeciesintronspanninggenicmarkerslinkedwithgenomeinformationoflegumes