Cargando…
Sixty-Five Common Genetic Variants and Prediction of Type 2 Diabetes
We developed a 65 type 2 diabetes (T2D) variant–weighted gene score to examine the impact on T2D risk assessment in a U.K.-based consortium of prospective studies, with subjects initially free from T2D (N = 13,294; 37.3% women; mean age 58.5 [38–99] years). We compared the performance of the gene sc...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407866/ https://www.ncbi.nlm.nih.gov/pubmed/25475436 http://dx.doi.org/10.2337/db14-1504 |
_version_ | 1782367972318248960 |
---|---|
author | Talmud, Philippa J. Cooper, Jackie A. Morris, Richard W. Dudbridge, Frank Shah, Tina Engmann, Jorgen Dale, Caroline White, Jon McLachlan, Stela Zabaneh, Delilah Wong, Andrew Ong, Ken K. Gaunt, Tom Holmes, Michael V. Lawlor, Debbie A. Richards, Marcus Hardy, Rebecca Kuh, Diana Wareham, Nicholas Langenberg, Claudia Ben-Shlomo, Yoav Wannamethee, S. Goya Strachan, Mark W.J. Kumari, Meena Whittaker, John C. Drenos, Fotios Kivimaki, Mika Hingorani, Aroon D. Price, Jacqueline F. Humphries, Steve E. |
author_facet | Talmud, Philippa J. Cooper, Jackie A. Morris, Richard W. Dudbridge, Frank Shah, Tina Engmann, Jorgen Dale, Caroline White, Jon McLachlan, Stela Zabaneh, Delilah Wong, Andrew Ong, Ken K. Gaunt, Tom Holmes, Michael V. Lawlor, Debbie A. Richards, Marcus Hardy, Rebecca Kuh, Diana Wareham, Nicholas Langenberg, Claudia Ben-Shlomo, Yoav Wannamethee, S. Goya Strachan, Mark W.J. Kumari, Meena Whittaker, John C. Drenos, Fotios Kivimaki, Mika Hingorani, Aroon D. Price, Jacqueline F. Humphries, Steve E. |
author_sort | Talmud, Philippa J. |
collection | PubMed |
description | We developed a 65 type 2 diabetes (T2D) variant–weighted gene score to examine the impact on T2D risk assessment in a U.K.-based consortium of prospective studies, with subjects initially free from T2D (N = 13,294; 37.3% women; mean age 58.5 [38–99] years). We compared the performance of the gene score with the phenotypically derived Framingham Offspring Study T2D risk model and then the two in combination. Over the median 10 years of follow-up, 804 participants developed T2D. The odds ratio for T2D (top vs. bottom quintiles of gene score) was 2.70 (95% CI 2.12–3.43). With a 10% false-positive rate, the genetic score alone detected 19.9% incident cases, the Framingham risk model 30.7%, and together 37.3%. The respective area under the receiver operator characteristic curves were 0.60 (95% CI 0.58–0.62), 0.75 (95% CI 0.73 to 0.77), and 0.76 (95% CI 0.75 to 0.78). The combined risk score net reclassification improvement (NRI) was 8.1% (5.0 to 11.2; P = 3.31 × 10(−7)). While BMI stratification into tertiles influenced the NRI (BMI ≤24.5 kg/m(2), 27.6% [95% CI 17.7–37.5], P = 4.82 × 10(−8); 24.5–27.5 kg/m(2), 11.6% [95% CI 5.8–17.4], P = 9.88 × 10(−5); >27.5 kg/m(2), 2.6% [95% CI −1.4 to 6.6], P = 0.20), age categories did not. The addition of the gene score to a phenotypic risk model leads to a potentially clinically important improvement in discrimination of incident T2D. |
format | Online Article Text |
id | pubmed-4407866 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-44078662016-05-01 Sixty-Five Common Genetic Variants and Prediction of Type 2 Diabetes Talmud, Philippa J. Cooper, Jackie A. Morris, Richard W. Dudbridge, Frank Shah, Tina Engmann, Jorgen Dale, Caroline White, Jon McLachlan, Stela Zabaneh, Delilah Wong, Andrew Ong, Ken K. Gaunt, Tom Holmes, Michael V. Lawlor, Debbie A. Richards, Marcus Hardy, Rebecca Kuh, Diana Wareham, Nicholas Langenberg, Claudia Ben-Shlomo, Yoav Wannamethee, S. Goya Strachan, Mark W.J. Kumari, Meena Whittaker, John C. Drenos, Fotios Kivimaki, Mika Hingorani, Aroon D. Price, Jacqueline F. Humphries, Steve E. Diabetes Genetics/Genomes/Proteomics/Metabolomics We developed a 65 type 2 diabetes (T2D) variant–weighted gene score to examine the impact on T2D risk assessment in a U.K.-based consortium of prospective studies, with subjects initially free from T2D (N = 13,294; 37.3% women; mean age 58.5 [38–99] years). We compared the performance of the gene score with the phenotypically derived Framingham Offspring Study T2D risk model and then the two in combination. Over the median 10 years of follow-up, 804 participants developed T2D. The odds ratio for T2D (top vs. bottom quintiles of gene score) was 2.70 (95% CI 2.12–3.43). With a 10% false-positive rate, the genetic score alone detected 19.9% incident cases, the Framingham risk model 30.7%, and together 37.3%. The respective area under the receiver operator characteristic curves were 0.60 (95% CI 0.58–0.62), 0.75 (95% CI 0.73 to 0.77), and 0.76 (95% CI 0.75 to 0.78). The combined risk score net reclassification improvement (NRI) was 8.1% (5.0 to 11.2; P = 3.31 × 10(−7)). While BMI stratification into tertiles influenced the NRI (BMI ≤24.5 kg/m(2), 27.6% [95% CI 17.7–37.5], P = 4.82 × 10(−8); 24.5–27.5 kg/m(2), 11.6% [95% CI 5.8–17.4], P = 9.88 × 10(−5); >27.5 kg/m(2), 2.6% [95% CI −1.4 to 6.6], P = 0.20), age categories did not. The addition of the gene score to a phenotypic risk model leads to a potentially clinically important improvement in discrimination of incident T2D. American Diabetes Association 2015-05 2014-12-04 /pmc/articles/PMC4407866/ /pubmed/25475436 http://dx.doi.org/10.2337/db14-1504 Text en © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. |
spellingShingle | Genetics/Genomes/Proteomics/Metabolomics Talmud, Philippa J. Cooper, Jackie A. Morris, Richard W. Dudbridge, Frank Shah, Tina Engmann, Jorgen Dale, Caroline White, Jon McLachlan, Stela Zabaneh, Delilah Wong, Andrew Ong, Ken K. Gaunt, Tom Holmes, Michael V. Lawlor, Debbie A. Richards, Marcus Hardy, Rebecca Kuh, Diana Wareham, Nicholas Langenberg, Claudia Ben-Shlomo, Yoav Wannamethee, S. Goya Strachan, Mark W.J. Kumari, Meena Whittaker, John C. Drenos, Fotios Kivimaki, Mika Hingorani, Aroon D. Price, Jacqueline F. Humphries, Steve E. Sixty-Five Common Genetic Variants and Prediction of Type 2 Diabetes |
title | Sixty-Five Common Genetic Variants and Prediction of Type 2 Diabetes |
title_full | Sixty-Five Common Genetic Variants and Prediction of Type 2 Diabetes |
title_fullStr | Sixty-Five Common Genetic Variants and Prediction of Type 2 Diabetes |
title_full_unstemmed | Sixty-Five Common Genetic Variants and Prediction of Type 2 Diabetes |
title_short | Sixty-Five Common Genetic Variants and Prediction of Type 2 Diabetes |
title_sort | sixty-five common genetic variants and prediction of type 2 diabetes |
topic | Genetics/Genomes/Proteomics/Metabolomics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407866/ https://www.ncbi.nlm.nih.gov/pubmed/25475436 http://dx.doi.org/10.2337/db14-1504 |
work_keys_str_mv | AT talmudphilippaj sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT cooperjackiea sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT morrisrichardw sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT dudbridgefrank sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT shahtina sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT engmannjorgen sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT dalecaroline sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT whitejon sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT mclachlanstela sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT zabanehdelilah sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT wongandrew sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT ongkenk sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT gaunttom sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT holmesmichaelv sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT lawlordebbiea sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT richardsmarcus sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT hardyrebecca sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT kuhdiana sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT warehamnicholas sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT langenbergclaudia sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT benshlomoyoav sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT wannametheesgoya sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT strachanmarkwj sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT kumarimeena sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT whittakerjohnc sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT drenosfotios sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT kivimakimika sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT hingoraniaroond sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT pricejacquelinef sixtyfivecommongeneticvariantsandpredictionoftype2diabetes AT humphriesstevee sixtyfivecommongeneticvariantsandpredictionoftype2diabetes |