Cargando…
Sphingolipids Are Required for Efficient Triacylglycerol Loss in Conjugated Linoleic Acid Treated Adipocytes
Conjugated linoleic acid (CLA) reduces adiposity in human and mouse adipocytes. This outcome is achieved through a variety of biological responses including increased energy expenditure and fatty acid oxidation, increased inflammation, repression of fatty acid biosynthesis, attenuated glucose transp...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407960/ https://www.ncbi.nlm.nih.gov/pubmed/25906159 http://dx.doi.org/10.1371/journal.pone.0119005 |
Sumario: | Conjugated linoleic acid (CLA) reduces adiposity in human and mouse adipocytes. This outcome is achieved through a variety of biological responses including increased energy expenditure and fatty acid oxidation, increased inflammation, repression of fatty acid biosynthesis, attenuated glucose transport, and apoptosis. In the current study, profiling of 261 metabolites was conducted to gain new insights into the biological pathways responding to CLA in 3T3-L1 adipocytes. Sphinganine and sphingosine levels were observed to be highly elevated in CLA treated adipocytes. Exogenous chemicals that increased endogenous ceramide levels decreased lipid levels in adipocytes, and activated AMP-activated protein kinase (AMPK) as well as NF-κB, both of which are typically activated in CLA treated adipocytes. Concurrent inhibition of ceramide de novo biosynthesis and recycling from existing sphingolipid pools attenuated the lipid lowering effect normally associated with responses to CLA, implicating ceramides as an important component of the lipid lowering response in CLA treated adipocytes. |
---|