Cargando…

mLST8 Promotes mTOR-Mediated Tumor Progression

The activity of the mechanistic target of rapamycin (mTOR) is elevated in various types of human cancers, implicating a role in tumor progression. However, the molecular mechanisms underlying mTOR upregulation remain unclear. In this study, we found that the expression of mLST8, a required subunit o...

Descripción completa

Detalles Bibliográficos
Autores principales: Kakumoto, Kyoko, Ikeda, Jun-ichiro, Okada, Masato, Morii, Eiichi, Oneyama, Chitose
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408021/
https://www.ncbi.nlm.nih.gov/pubmed/25906254
http://dx.doi.org/10.1371/journal.pone.0119015
Descripción
Sumario:The activity of the mechanistic target of rapamycin (mTOR) is elevated in various types of human cancers, implicating a role in tumor progression. However, the molecular mechanisms underlying mTOR upregulation remain unclear. In this study, we found that the expression of mLST8, a required subunit of both mTOR complex 1 (mTORC1) and complex 2 (mTORC2), was upregulated in several human colon and prostate cancer cell lines and tissues. Knockdown of mLST8 significantly suppressed mTORC1 and mTORC2 complex formation, and it also inhibited tumor growth and invasiveness in human colon carcinoma (HCT116) and prostate cancer (LNCaP) cells. Overexpression of mLST8 induced anchorage-independent cell growth in normal epithelial cells (HaCaT), although mLST8 knockdown had no effect on normal cell growth. mLST8 knockdown reduced mTORC2-mediated phosphorylation of AKT in both cancer and normal cells, whereas it potently inhibited mTORC1-mediated phosphorylation of 4E-BP1 specifically in cancer cells. These results suggest that mLST8 plays distinct roles in normal and cancer cells, depending upon its expression level, and that mLST8 upregulation may contribute to tumor progression by constitutively activating both the mTORC1 and mTORC2 pathways.