Cargando…
The heart's ‘little brain’ controlling cardiac function in the rabbit
New Findings •What is the topic of this review? The topic of the review is the intrinsic cardiac nervous system in the rabbit. •What advances does it highlight? The anatomy of rabbit intrinsic ganglia is similar to that of other species, including humans. Immunohistochemistry confirms the presence o...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409095/ https://www.ncbi.nlm.nih.gov/pubmed/25833107 http://dx.doi.org/10.1113/expphysiol.2014.080168 |
_version_ | 1782368153678905344 |
---|---|
author | Brack, Kieran E |
author_facet | Brack, Kieran E |
author_sort | Brack, Kieran E |
collection | PubMed |
description | New Findings •What is the topic of this review? The topic of the review is the intrinsic cardiac nervous system in the rabbit. •What advances does it highlight? The anatomy of rabbit intrinsic ganglia is similar to that of other species, including humans. Immunohistochemistry confirms the presence of cholinergic and adrenergic neurones, with a striking arrangement of neuronal nitric oxide synthase-positive cell bodies. Activation of atrial ganglia produces effects on local and remote regions. Heart disease is a primary cause of mortality in the developed world, and it is well recognized that neural mechanisms play an important role in many cardiac pathologies. The role of extrinsic autonomic nerves has traditionally attracted the most attention. However, there is a rich intrinsic innervation of the heart, including numerous cardiac ganglia (ganglionic plexuses), that has the potential to affect cardiac function independently as well as to influence the actions of the extrinsic nerves. To investigate this, an isolated, perfused, innervated rabbit Langendorff heart preparation was considered the best option. Although ganglionic plexuses have been well described for several species, there was no full description of the anatomy and histochemistry of rabbit hearts. To this end, rabbit intrinsic ganglia were located using acetylcholinesterase histology (n = 33 hearts). This revealed six generalized ganglionic regions, defined as a left neuronal complex above the left pulmonary vein, a right neuronal complex around the base of right cranial vein, three scattered in the dorsal right atrium and a region containing numerous ventricular ganglia located on the conus arteriosus. Using immunohistochemistry, neurons were found to contain choline acetyltransferase or tyrosine hydroxylase and/or neuronal nitric oxide synthase in differing amounts (choline acetyltransferase > tyrosine hydroxylase > neuronal nitric oxide synthase). The function of rabbit intrinsic ganglia was investigated using a bolus application of nicotine or electrical stimulation at each of the above sites whilst measuring heart rate and atrioventricular conduction. Nicotine applied to different ganglionic plexuses caused a bradycardia, a tachycardia or a mixture of the two, with the right atrial plexus producing the largest chronotropic responses. Electrical stimulation at these sites induced only a bradycardia. Atrioventricular conduction was modestly changed by nicotine, the main response being a prolongation. Electrical stimulation produced significant prolongation of atrioventricular conduction, particularly when the right neuronal complex was stimulated. These studies show that the intrinsic plexuses of the heart are important and could be crucial for understanding impairments of cardiac function. Additionally, they provide a strong basis from which to progress using the isolated, innervated rabbit heart preparation. |
format | Online Article Text |
id | pubmed-4409095 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BlackWell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-44090952015-04-29 The heart's ‘little brain’ controlling cardiac function in the rabbit Brack, Kieran E Exp Physiol Symposium Reports New Findings •What is the topic of this review? The topic of the review is the intrinsic cardiac nervous system in the rabbit. •What advances does it highlight? The anatomy of rabbit intrinsic ganglia is similar to that of other species, including humans. Immunohistochemistry confirms the presence of cholinergic and adrenergic neurones, with a striking arrangement of neuronal nitric oxide synthase-positive cell bodies. Activation of atrial ganglia produces effects on local and remote regions. Heart disease is a primary cause of mortality in the developed world, and it is well recognized that neural mechanisms play an important role in many cardiac pathologies. The role of extrinsic autonomic nerves has traditionally attracted the most attention. However, there is a rich intrinsic innervation of the heart, including numerous cardiac ganglia (ganglionic plexuses), that has the potential to affect cardiac function independently as well as to influence the actions of the extrinsic nerves. To investigate this, an isolated, perfused, innervated rabbit Langendorff heart preparation was considered the best option. Although ganglionic plexuses have been well described for several species, there was no full description of the anatomy and histochemistry of rabbit hearts. To this end, rabbit intrinsic ganglia were located using acetylcholinesterase histology (n = 33 hearts). This revealed six generalized ganglionic regions, defined as a left neuronal complex above the left pulmonary vein, a right neuronal complex around the base of right cranial vein, three scattered in the dorsal right atrium and a region containing numerous ventricular ganglia located on the conus arteriosus. Using immunohistochemistry, neurons were found to contain choline acetyltransferase or tyrosine hydroxylase and/or neuronal nitric oxide synthase in differing amounts (choline acetyltransferase > tyrosine hydroxylase > neuronal nitric oxide synthase). The function of rabbit intrinsic ganglia was investigated using a bolus application of nicotine or electrical stimulation at each of the above sites whilst measuring heart rate and atrioventricular conduction. Nicotine applied to different ganglionic plexuses caused a bradycardia, a tachycardia or a mixture of the two, with the right atrial plexus producing the largest chronotropic responses. Electrical stimulation at these sites induced only a bradycardia. Atrioventricular conduction was modestly changed by nicotine, the main response being a prolongation. Electrical stimulation produced significant prolongation of atrioventricular conduction, particularly when the right neuronal complex was stimulated. These studies show that the intrinsic plexuses of the heart are important and could be crucial for understanding impairments of cardiac function. Additionally, they provide a strong basis from which to progress using the isolated, innervated rabbit heart preparation. BlackWell Publishing Ltd 2015-04-01 2014-10-29 /pmc/articles/PMC4409095/ /pubmed/25833107 http://dx.doi.org/10.1113/expphysiol.2014.080168 Text en © 2014 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society http://creativecommons.org/licenses/by/4.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Symposium Reports Brack, Kieran E The heart's ‘little brain’ controlling cardiac function in the rabbit |
title | The heart's ‘little brain’ controlling cardiac function in the rabbit |
title_full | The heart's ‘little brain’ controlling cardiac function in the rabbit |
title_fullStr | The heart's ‘little brain’ controlling cardiac function in the rabbit |
title_full_unstemmed | The heart's ‘little brain’ controlling cardiac function in the rabbit |
title_short | The heart's ‘little brain’ controlling cardiac function in the rabbit |
title_sort | heart's ‘little brain’ controlling cardiac function in the rabbit |
topic | Symposium Reports |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409095/ https://www.ncbi.nlm.nih.gov/pubmed/25833107 http://dx.doi.org/10.1113/expphysiol.2014.080168 |
work_keys_str_mv | AT brackkierane theheartslittlebraincontrollingcardiacfunctionintherabbit AT brackkierane heartslittlebraincontrollingcardiacfunctionintherabbit |