Cargando…
Prioritization of Free-Text Clinical Documents: A Novel Use of a Bayesian Classifier
BACKGROUND: The amount of incoming data into physicians’ offices is increasing, thereby making it difficult to process information efficiently and accurately to maximize positive patient outcomes. Current manual processes of screening for individual terms within long free-text documents are tedious...
Autores principales: | Singh, Mark, Murthy, Akansh, Singh, Shridhar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Gunther Eysenbach
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409648/ https://www.ncbi.nlm.nih.gov/pubmed/25863643 http://dx.doi.org/10.2196/medinform.3793 |
Ejemplares similares
-
Correction: Prioritization of Free-Text Clinical Documents: A Novel Use of a Bayesian Classifier
por: Singh, Mark, et al.
Publicado: (2020) -
Classifying Free
Texts Into Predefined Sections Using
AI in Regulatory Documents: A Case Study with Drug Labeling Documents
por: Gray, Magnus, et al.
Publicado: (2023) -
Collaborative biocuration—text-mining development task for document prioritization for curation
por: Wiegers, Thomas C., et al.
Publicado: (2012) -
Classifying domain-specific text documents containing ambiguous
keywords
por: Karimi, Kamran, et al.
Publicado: (2021) -
Building an Ensemble of Fine-Tuned Naive Bayesian Classifiers for Text Classification
por: El Hindi, Khalil, et al.
Publicado: (2018)